The structural and thermal model of the Euclid satellite recently completed its thermal qualification tests at Thales Alenia Space’s premises in Cannes, France. Integrated in near-flight configuration, including the payload and service modules, the satellite model is ready to undergo mechanical vibration tests in coming weeks.
Euclid is a medium-class mission in ESA's Cosmic Vision programme to investigate the expansion of our Universe over the past ten billion years, probing cosmic epochs from before the expansion started to accelerate, all the way to the present.
The satellite model shown in this photo is not the so-called flight model – the one that will be eventually launched – but it contains flight-worthy spare parts. From a mechanical point of view, it is identical to the flight model, and it allows engineers to apply extreme thermal and mechanical stresses during testing, without having to subject the delicate flight hardware to same processes. These tests, which will soon involve vibrations using a large shaker to simulate launch conditions, are performed to determine whether the thermal and mechanical properties of the actual hardware correspond to the predictions.
A peculiarity of Euclid is that the satellite will maintain a very stable optical performance under the most extreme attitude changes that will occur during slew manoeuvres. The recent thermal vacuum tests have simulated and successfully proven the capability to maintain the thermal stability in these conditions. The next step will be to confirm that also the optical stability will be ensured, but this will only happen during the end-to-end test of the payload module flight model next year.
Euclid is currently scheduled for launch in 2022.