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Abstract Global optimisation problems arise daily in almost all operational and managerial phases of a space
mission. Large computing power is often required to solve these kind of problems, together with
the development of algorithms tuned to the particular problem treated. In this paper a generic dis-
tributed computing environment built for the internal European Space Agency network but adapt-
able to generic networks is introduced and used to distribute different global optimisation tech-
niques. Differential Evolution, Particle Swarm Optimisation and Monte Carlo Method have been
distributed so far and tested upon different problems to show the functionality of the environment.
Support for both simple and multi-objective optimisation has been implemented, and the possibility
of implementing other global optimisation techniques and integrating them into one single global
optimiser has been left open. The final aim is that of obtaining a distributed global multi-objective
optimiser that is able to ‘learn’ and apply the best combination of the available solving strategies
when tackling a generic “black-box" problem.
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1. The Distributed Computing Environment
Our distributed computing architecture follows the scheme of a generic server-client model
[10]: it consists of a central computer (server) and a number of user computers (clients). The
architecture is divided into three layers on both the server and the client side (Figure 1). This
promotes the modular development of the whole system: for example, the computation layer
of the clients (involving the optimisation solver modules) can be developed and maintained
independently of the other client layers.

The main tasks of the server are the following: pre-processing the whole computing (op-
timisation) problem by disassembling it into subproblems; distributing sets of subproblems
among the clients; and generating the final result of the computation by assembling solutions
received from the clients.

On the opposite side, the client computers ask for subproblems, solve them and send back
the results to the server. As with many current distributed applications (employing com-
mon user desktop machines), our approach is also based on the utilisation of the idle time of
the clients. More precisely, a client only asks for subproblems when there is no user activity
detected either on the mouse or on the keyboard. In our environment we hide the client com-
putations behind a screen saver, similarly to the most widely-known distributed computing
project, the SETI@home project (http://setiathome.ssl.berkeley.edu).

As shown in Figure 1, the basic functionalities of the individual layers are the same for
both the client and the server. The uppermost layers are visible to the client users and for the
server administrator, respectively. These layers contain the screen saver (client) and a server
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Figure 1. Architecture of the distributed environment.

progress-monitoring user interface (displaying the actual state of the computation process),
on the server.

The top-level layers communicate with the real computation layers that are performing the
numerical tasks. The computation layers are responsible for disassembling, distributing and
assembling the whole computation task (server), and evaluating the subproblems (clients).

The lowermost, so-called message management layers maintain connection with the com-
putation layers, and send and receive the problem and solution ‘packages’ between the client
and the server. This service was implemented by network sockets using the Windows Sockets
version 2 Application Programming Interface [12].

The environment was programmed in Visual C++, strongly utilising the advantages of the
object-oriented language. The introduction of the detailed architecture is a subject of sepa-
rate, forthcoming publications (due to its extent); here we restrict ourselves to giving a short
overview on the key concepts and building blocks.

The environment provides several data storage classes to program the various solvers in an
easy way. The basic data type is called SOL PAIR; it is the representation of an (x, f(x)) ⊂

R
n ×R

m pair. Both components are implemented as a variable size vector, which allows us to
deal with single and multi-objective optimisation problems, constraint satisfaction problems
(with no objective function), and virtually every kind of distributable (even not necessarily
optimisation!) problems. For population-based solvers, it was particularly useful to have a
POPULATION storage class, which is simply a set (list) of SOL PAIRs. The basic storage types
used during the client-server communication are called ‘packages’: the most important one is
a base class called PS PACKAGE, which is used to derive the specific problem and solution
packages for the particular solvers. A package typically involves a data storage object (such
as a POPULATION) together with instruction (server) and solution (client) information. All
the above classes have member functions which transform the data to and from a stream of
characters. The latter data type is used by the message management routines to transfer the
data on the network.

The server computation layer is based on a C++ abstract class called SERVER. The particular
servers (implementing various strategies to solve the whole problem) are derived from this
class. On the other hand, each client computation layer contains the set of available solvers.
The solvers are derived from an abstract SOLVER class. This means that the environment can
be arbitrarily extended by adding server and solver classes. Moreover, since each problem
package (sent out to a client) is always solved by one specified solver, various server strategies
can be tested without changing the client application. It is very important that the solution
packages should always be kept in a consistent state by the solver: if the computation is
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interrupted by a user action, a fraction (but still useful part) of the whole solution is sent back
to the server.

The optimisation problems are implemented as instances of an OPT PROB class: in prac-
tice, this means that for every particular optimisation problem the user have to provide the
following routines: function evaluation at a given point, random generation of a feasible point,
feasibility checking of a given point (and its substitution with a feasible point in case of infeasi-
bility), and a routine implementing a preference relation between every two feasible solutions.

2. The global optimisation algorithms
In the present version of the software, there are three different optimisation solvers available:

1. Monte–Carlo search (MC, [7]). In this method, the server requests the clients to create
a certain number of independent random samples from the feasible search space (using
uniform distribution in each variable) and sends the most promising solution back to
the server. The server maintains a set of the best solutions received (Pareto optimality
criteria are used in the case of multi-objective optimisation problems).

2. Differential Evolution (DE). This novel optimisation algorithm is based on updating
each element of a set (population) of feasible solutions by using the difference of two
other randomly selected population elements. The method is described in detail in [9].
In our environment the DE server updates a fixed-size main population, and each prob-
lem package consists of a request to evolve a randomly-selected subpopulation for a
specified number of iterations. The main population is then updated by the returned
population with respect to the preference relation of the particular problem.

3. Particle Swarm optimisation (PSO). This is another population-based algorithm inspired
by the social behaviour of bird or fish flockings [5]. In a PSO method, each element
(particle) evolves by taking the combination of the current global best and individual
best solutions into account. In the proposed distributed version of the PSO method, the
server updates a main population and sends request to the clients to evolve a random
subpopulation (in the same way as for the DE algorithm). This distributed variant shows
similarities with the Multi-Swarm optimisation techniques [1] developed as a possible
improvement of the PSO algorithm.

3. The optimisation problems
Originally, our method was designed to deal with bound-constrained optimisation problems:

minf(x) (1)

subject to x ∈ D, (2)

where D = [Li, Ui], Li, Ui ∈ R, and the objective function f : R
n → R

m is continuous in
D. Nevertheless, the currently implemented solvers allow us to handle a certain group of
inequality-constrained problems as well: namely, optimisation problems which, in addition
to (2), have further inequality constraints in the form of

gi,1(x1, . . . , xi−1) ≤ xi ≤ gi,2(x1, . . . , xi−1), i = 2, . . . , n, (3)

where the exact upper bound of gi,1 and the exact lower bound of gi,2 can be determined in
a machine computable form (e.g. as an expression or a subroutine) for all xj ∈ [Lj , Uj ], j =
1, . . . , i − 1. This property allows us to replace a infeasible solution with a ‘close’ feasible so-
lution, e.g. one located on the boundary of the feasible set. (Note, that the radio occultation



4 Dario Izzo and Mihály Csaba Markót

problem below can be formalized as a constrained problem in the above form: when generat-
ing feasible satellite orbits, the orbital elements eccentricity and orbital period are bounded by a
function of the semi-major axis.)

We performed the numerical tests on the following hard test problems:

1. SAT: The radio-occultation problem described in [4] in detail. This is an optimisation
problem of satellite constellations with a complex objective function structure. The op-
timisation has a dual objective: maximising the number of satellite occultations while
distributing the occultations as uniformly as possible on the latitudes. This last objec-
tive is described by the standard deviation of the number of occultations occurring at
different latitude stripes.

2. RB: The generalisation of the Rosenbrock global optimisation test function [8] given by
minimising

f(x) =

n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2). (4)

We have used n = 50 and xi ∈ [−5.12, 5.12], i = 1, . . . , n.

3. LJ: A potential energy minimisation problem for the Lennard-Jones atom cluster for d =
38 atoms [11]. The potential is given by

f(p) =
∑

1≤i<j≤d

4((1/rij)
12

− (1/rij)
6), (5)

where pi = (xi, yi, zi), i = 1, . . . , d is the location of the ith atom, and rij is the Euclidean
distance between atoms i and j. We have used x1 = y1 = z1 = y2 = z2 = z3 = 0 and
xi ∈ [0, 6], yi, zi ∈ [−3, 3] for all other variables. (Thus, (5) with d = 38 corresponds to
an n = 108–dimensional problem.) This problem has important practical generalisations
and it serves as a good test case for parallel and distributed solvers. The chosen problem
instance is perhaps the most challenging one in the range of 1 ≤ n ≤ 50. (Note that we
did not intend to improve the best existing solution – this would definitely require far
more sophisticated algorithms and problem formulation.)

4. Preliminary test results
We solved the above problems with each solver 10 times. The solver parameters related to the
distributed implementations were the following:

- Population-related settings of the DE and PSO solvers:

- The size of the main population was set to MP = 5n for all problems.
- The size of the subpopulations was set to SP = MP/5 for problems SAT and RB,

and to SP = MP/10 for problem LJ. The reason for the latter setting was that we
had to limit the size of problem and solution packages to about 30Kbytes in order
to keep the network communication traffic within certain bounds.

- The allowed number of iterations for evolving the subpopulations was chosen to
be IT = 2000 for problems RB and LJ, and to IT = 200 for problem SAT.

- In the case of the MC solver, the allowed number of random sample generation per
package was IT · SP .

- For all solvers, the number of function evaluations was limited to 240 000, 5 000 000, and
5 400 000 for problems SAT, RB, and LJ, respectively.
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The further control parameters of the DE and PSO algorithms were the default values taken
from the implementations [2] and [3], respectively. For DE, we employed the algorithm vari-
ant cited as ‘DE1’ in the above reference.

The computations were performed during normal working days at the European Space
Research and Technology Centre (ESTEC). The client application (hidden behind the screen
saver) was installed on nine Windows–XP desktops. The sum of the CPU frequencies of the
computers was approximately 15.1 GHz, which corresponds to a double-precision theoretical
peak performance of about 15.1 Gflops. The results are summarized in Table 1 with respect to
the best achieved objective function values. To measure the efficiency for the multi-objective
SAT problem, we used a further criterion ([4]) in order to compare two solutions. (The vari-
ance of the individual test results was small for all strategies, thus, the displayed values can
serve as a valid base of a comparison.) The last line of the table shows the previously known
best solutions. These values come from [4] for SAT, and from [11] for LJ, respectively. The
value given for RB is the known global minimum.

Table 1. The best solutions found during the test runs

solver SAT RB LJ

MC (1 134, 6.20) 1.574e+5 -10.16
DE (2 722, 4.15) 24.98 -25.67
PSO (2 174, 4.78) 27.20 -27.19

best known (1 535, 7.78) 0 -173.93

Summarising the results, we can state that on the SAT and RB problems the DE algorithm
outperformed the other two methods, while on the LJ problem the PSO method worked best.
As we expected, these more sophisticated methods behaved far more efficiently than the MC
search. In particular, on the SAT problem the Differential Evolution resulted in a big improve-
ment on the previously known best solution (obtained by Monte–Carlo search,[4]). Our main
future task is to find suitable distributed generalisations of these (and other) solvers in order
to reach further performance improvements.

5. Conclusion and future research
Besides our future plans to extend the system with further global optimisation methods, the
most promising way of improving the performance of the distributed environment is to em-
ploy the available solvers in an intelligent, co-operative way. This idea requires the com-
parison of the behaviour of the different solvers. We plan to develop and investigate a set
of heuristics to direct the allocation of the packages and the selection of solvers. One such
heuristic indicator can be the average (or expected) effort needed to improve the best existing
solution by a unit amount, while using a given number of function evaluations and solver
strategy. This indicator can be continuously updated for each solver in running time, and can
be used as the basis measurement for further decisions.
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