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Abstract— The optimization of spacecraft trajectories can be
formulated as a global optimization task. The complexity of the
problem depends greatly on the problem formulation, on the
spacecraft route to its final target planet, and on the type of
engine and power system that is available on-board the space-
craft. Few attempts have been made to use a global optimization
framework to design trajectories that make use of electric
propulsion to propel the spacecraft between planets because
of the large scale and extreme complexity of the resulting non-
linear programming problem. The presence of a high number of
nonlinear constraints, in particular, requires a special attention
with respect to the global optimization technique adopted. Here
we use the Sims-Flanagan transcription method to produce
the nonlinear programming problem and we make use of two
global optimization algorithms, basin hopping and simulated
annealing with adaptive neighborhood to attempt exploring
efficiently the solution space. Both algorithms are hybridized
with a local search. We consider two different interplanetary
trajectories, an Earth-Earth-Jupiter transfer and an Earth-
Earth-Earth-Jupiter transfer with a nuclear electric propulsion
spacecraft inspired by the Jupiter Icy Moons Orbiter. For both
problems, our approach is able to explore automatically the
vast solution space producing a large number of trajectories in
a large range of final mass and flight times.

I. INTRODUCTION

The application of global optimization techniques to the
design of interplanetary trajectories has received quite some
attention in the last years as it becomes increasingly evident
that such a framework introduces a high level of automation
in a process that is otherwise still heavily relying on ex-
pert engineering knowledge. The systematic study of global
optimization algorithms in relation to chemically propelled
spacecrafts [1], [2], [3], [4], [5], [6] has proved that ef-
ficient computer algorithms are able to produce, for these
types of spacecrafts, competitive trajectory designs. Thanks
to initiatives such as the Global Trajectory Optimization
Competition (GTOC) [7] and the Global Trajectory Problem
database (GTOP) [8] of the European Space Agency, the
attention of communities not traditionally linked to aerospace
engineering research [9], [10], [11] has increased bringing a
beneficial influx of new ideas and solutions thus advancing
the field considerably. While for problem formalizations such
as the MGA (Multiple Gravity Assist) and the MGA-DSM
(Multiple Gravity Assist with Deep Space Maneuver) [4],
the advantages of using these techniques has been proved, no
convincing results have been produced so far [12] in the case
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of the LT-MGA problem (Low-Thrust Multiple Gravity As-
sist). The optimization problem of simple low-thrust trajecto-
ries can be solved efficiently by local optimization methods.
However, on a large design space, local methods converge
to suboptimal solutions or sometimes fail to converge if a
good starting guess is not provided. On the other hand,
global methods fail to provide a good solution because of the
complexity of the resulting nonlinear programming (NLP)
problem that, unlike the box-constrained MGA and MGA-
DSM, has to deal with a high number of nonlinear constraints
if an accurate spacecraft dynamics has to be accounted for.
Constraints in the optimization problem can be handled as
an extra penalty term in the objective function [13]. However
a suitable value of the weighting factor on the penalty
is unknown beforehand. A bad choice on the weighting
factor leads to premature convergence on the objective or to
infeasible solutions. We here build on some recent work [13],
[14] and we present a global optimization framework for the
LT-MGA problem where nonlinear constraints handling is
incorporated in the main global optimization loop via the
algorithm hybridization with a local method. The resulting
algorithm explore efficiently the vast solution space of low-
thrust trajectories thus producing a convincing case for using
global optimization techniques also in relation to the LT-
MGA problem.
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Fig. 1. Impulsive ∆V transcription of a low-thrust trajectory, after Sims
and Flanagan [15]



II. TRAJECTORY MODEL

The trajectory model that is to be used to transcribe an LT-
MGA trajectory optimization into a nonlinear programming
problem (to be solved by global optimization methods) is
crucial to the success of the overall algorithm one wants
to produce. Criteria to be accounted for include accuracy
in the description of the spacecraft dynamics, computational
efficiency in the objective function and constraints evalua-
tion, problem dimension and number of nonlinear constraints
produced. Bearing these issues in mind, in this paper we
propose to use a version of the trajectory model proposed
by Sims and Flanagan [15]. Figure 1 briefly illustrates such
a trajectory model. Trajectory is divided into legs which
begin and end with a planet. Low-thrust arcs on each leg
are modeled as sequences of impulsive maneuvers ∆V,
connected by conic arcs. We denote the number of impulses
(which is the same as the number of segments) with N .
The ∆V at each segment should not exceed a maximum
magnitude, ∆Vmax, where ∆Vmax is the velocity change
accumulated by the spacecraft when it is operated at full
thrust during that segment:

∆Vmax = (Tmax/m)(tf − t0)/N (1)

where Tmax is the maximum thrust of the low-thrust
engine, m is the mass of the spacecraft, t0 and tf is the
initial and final time of a leg.

At each leg, trajectory is propagated (with a two-body
model) forward and backward to a matchpoint (usually
halfway through a leg), where the spacecraft state vector
becomes Smf = {rx, ry, rz, vx, vy, vz}mf (and similarly for
Smb), where r and v are respectively the position and velocity
of the spacecraft and the subscripts represents the Cartesian
x, y, z components. The forward- and backward-propagated
half-legs should meet at the matchpoint, or the mismatch in
position and velocity:

Smf − Smb = {∆rx,∆ry,∆rz,∆vx,∆vy,∆vz} (2)

should be less than a tolerance in order to have a feasible
trajectory. We employ the patched-conic assumption for
gravity-assist trajectories, in which the spacecraft velocity
is changed instantaneously by the planet’s gravity during a
flyby. The angle between the incoming and outgoing V∞, or
the flyby turn angle δ, is given by:

sin(δ/2) = 1/(1 + rpV
2
∞/µ) (3)

where rp is the flyby periapsis radius and µ is the
gravitational parameter of the gravity-assist body.

Note that the constraints on the ∆V magnitude can be
considered linear constraints, nonlinear constraints or simply
bounds on the decision vector variables according to the
exact choice of the decision vector encoding. The resulting
NLP will have a dimension equal (or smaller depending on
the mission type) to (8 + 3N)M , where M is the number of
legs considered, and a number of nonlinear constraints equal

(or greater according to the decision vector encoding chosen
and to other mission details) to neqM , where neq is the
number of equation considered on the dynamics (e.g. neq = 7
if a three dimensional problem with mass is considered).

III. OPTIMIZATION PROBLEM

A. The Objective and Constraints

The optimization problem is divided into two phases. In
the first phase, we employ global optimization algorithms
(which will be discussed in Section IV) to solve the problem
in its simpler form, where mass is assumed to be constant
throughout the trajectory. The objective is to minimize the
total ∆V, or mathematically it can be stated as follow:

First Phase with constant mass

Min. J1 =
M∑
j

N∑
i

∆Vi (4)

subject to
1) the equality constraints on the state mismatch in Eq.

(2),
2) the inequality constraints that ∆V ≤ ∆Vmax (Eq. (1)),
3) and the inequality constraints that the angle between

the incoming and outgoing V∞ vectors is less than the
maximum turn angle given by Eq. (3).

In the second phase the spacecraft mass is propagated
using the rocket equation [16]:

mi+1 = mi exp(−∆Vi/g0Isp) (5)

where the subscript i denotes the mass and ∆V on the i-th
segment, g0 is the standard gravity (9.80665 m/s2), and Isp

is the specific impulse of the low-thrust engine. In the second
phase, the objective is changed from minimizing total ∆V
to maximizing the final spacecraft mass:

Second Phase with variable mass

Max. J2 = mf (6)

where mf is the final spacecraft mass. The constraints here
are the same as those in the first phase, except that there is
one extra component with the mass (∆m) on the state mis-
match vector. Solutions found in the first phase are optimized
locally in the second phase using a software package called
SNOPT [17] [18], which implements sequential quadratic
programming (SQP).

B. The Decision Vector

The decision vector we used contains the following vari-
ables
• the departure epoch t0
• the departure velocity relative to the earth V∞
• for each leg j and each segment i, the impulse intensity

and direction ∆Vij

• for each swingby, the incoming and outgoing velocities
relative to the planet

• for each swingby j, the swingby epoch tj



• the arrival epoch tf
All the velocities and impulses are expressed with three
Cartesian coordinates. Since we are considering a rendezvous
problem, the arrival velocity to the destination is not included
in the set of variables, as it is constrained to be zero relative
to the planet. During the second phase, additional variables
are added to the problem, representing the spacecraft mass at
departure and arrival m0 and mf , as well as the spacecraft
mass at the swingby times.

IV. GLOBAL OPTIMIZATION ALGORITHMS

The proposed transcription of the LT-MGA problem is
a continuous, constrained, nonlinear optimization problem.
Since such class of problems usually present local minimiz-
ers that are not global, they are often unsolvable using only
local optimization algorithms. Practical experience shows
that this is usually the case with trajectory optimization
problems, regardless of the propulsion type. Thus, local
solvers must be used inside a global optimization strategy in
order to achieve solutions which are as close as possible to
the optimal ones. Here we describe three different approaches
that have been tried on such problem. Let us first define some
procedures that the algorithms will use.
• G() is a procedure that randomly generates a starting

point. Ideally, we would like the point to be uniformly
distributed on the feasible region, but since our prob-
lem’s feasible set is of a very small dimension, and
generating a point inside such region is a hard problem
by itself, we used a procedure that uniformly generates
points into a reasonable box containing the feasible
region.

• S(x) is a procedure that, given a point x, computes a
local minimizer of the objective function, taking x as
an initial guess. We used the SNOPT package for our
tests [17] [18].

• Best(x, y) is a procedure that, given two solutions x
and y, returns the best one according to a fixed rule.
Since we are dealing with a constrained optimization
problem, Best(x, y) chooses the point with the lower
constraint violation norm value. In case both points are
feasible, then the point with the lower objective function
value is chosen instead.

The first and most simple algorithm is called Multistart
(MS), which directly optimizes the points obtained by a
generator. Multistart can be described by the following
pseudo code

1) let x? := G()
2) for i = 1, . . . , N
3) let x := G()
4) let y? := S(x)
5) let x? := Best(x?, y?)
6) end for
Although for N big enough and reasonable choices of

G, S and Best, Multistart will eventually converge to
the global solution, the extremely slow convergence rate
renders this algorithm unfit for the vast majority of global

optimization problems. However, because of its simplicity,
this algorithm can be effectively used as a baseline to
compare other solvers to.

The second algorithm is called Monotonic Basin Hop-
ping (BH), or Iterated Local Search[19]. In addition to the
procedures previously used by Multistart, Monotonic Basin
Hopping needs a procedure P(x) that, given a point x returns
another point randomly generated in an conveniently defined
neighborhood of x. Such algorithm can then be described as
follows

1) let xbest := G()
2) for i = 1, . . . , N
3) let x := G()
4) let x? := S(x)
5) let k := 0
6) while (k < MNI) do:
7) let y := P(x?)
8) let y? := S(y)
9) if Best(y?, x?) = y? then

10) let x? := y?

11) let k := 0
12) else
13) let k := k + 1
14) end if
15) end while
16) let xbest := Best(xbest, x

?)
17) end for
In practice, after a local optimization, instead of generating

a new point inside the whole feasible region like is done with
Multistart, we restrict the generation inside a small region
centered on the current best point. If, as it happens with
real life problems, the good solutions are clustered together,
there is a good chance that the series of perturbations and
reoptimizations will lead to the best solution contained inside
the cluster [20] [21] [22] [23]. A new point is then generated
from the whole feasible set only when no improvement has
been made for a given number of times equal to a fixed
parameter called Max No Improve (MNI), which has been
set to 500 during our runs. The choice of the perturbation
function usually determines the Basin Hopping performance.
A typical rule is to choose a new point inside a small box or
sphere centered on the current point, but problem knowledge,
if available, can be used to better tune the perturbation. As
an example, when only two different planets are considered,
we can expect that by shifting a solution in time by a period
equal to the synodic period of such two planets, solutions that
are similar (and maybe better) than the current one could be
found. So the perturbation rule we used is composed by the
following two steps

1) for each variable xi and its lower and upper bounds
li and ui, add to xi a value uniformly chosen in the
interval [−r(ui − li), r(ui − li)] with a small given
value of r.

2) with a low probability p, shift the solution in time,
either forward or backward with equal probability, by



a time length equal to the synodic period.
In our experiments, we used r = 0.05 and p = 0.1.

Finally, the Simulated Annealing (SA) with Adaptive
Neighborhood has been used. The algorithm structure is
similar to Monotonic Basin Hopping, with some important
differences in key parts of the algorithm, which are quickly
described here. For a more complete description we refer to
[24] [25].

First of all, the comparison in line 9 is modified to allow
for non monotonicity. The problem is transformed to an
unconstrained optimization problem by using a penalty func-
tion to account for constraints violations. Then, Best(x, y)
returns x with probability 1 if f(x) ≤ f(y), or with
probability e(f(y)−f(x))/T if f(x) > f(y). T is the tem-
perature parameter, which is exponentially decreased every
fixed number of iterations.

Furthermore, the perturbation procedure P is adaptive,
meaning that the radius of the perturbation is adjusted at
every iteration. Such r value is increased each time the
generated point is accepted, and decreased each time the
point is refused.

Finally, the local optimization S is not executed at each
step of the algorithm, but just once at the end, starting from
the point returned by the Simulated Annealing with Adaptive
Neighborhood.

V. NUMERICAL RESULTS

A. Nuclear Electric Propulsion Mission to Jupiter

We demonstrate the application of our global optimization
framework to perform preliminary design of trajectories
for a mission that employs nuclear electric propulsion (see
Table I). The spacecraft is assumed to have a thruster with
a constant maximum thrust and a constant specific impulse,
with similar hardware parameters to the Jupiter Icy Moons
Orbiter [26][27] [28] [29] [30] (a canceled mission originally
proposed by NASA in 2003). We consider two planetary
encounter sequences in our example scenario: Earth-Earth-
Jupiter and Earth-Earth-Earth-Jupiter (i.e., one or two Earth
flybys), in which both cases rendezvous at Jupiter.

TABLE I
PARAMETERS FOR A NUCLEAR ELECTRIC PROPULSION MISSION

Parameters Values
Initial mass of the spacecraft 20, 000 kg
Maximum thrust 2.26 N
Specific impulse 6, 000 s
Launch date Jan. 1, 2020 – Jan. 1, 2030
Launch V∞ ≤ 2.0 km/s
Maximum time of flight 10 years (E-E-J) or 15 years (E-E-E-J)
Minimum flyby radius 7, 000 km

B. Earth-Earth-Jupiter

Our approach begins with the three global optimizers solv-
ing a simplified form of an Earth-Earth-Jupiter rendezvous

problem which minimizes the total ∆V (see Eq. (4)) and
mass is excluded in the calculations. The dimension of
this problem is 75 and there are 35 nonlinear constraints
(as we choose cartesian coordinates to encode the ∆V the
constraint on their magnitude is quadratic and thus increase
the number of nonlinear constraints). We first let the global
optimizers run for a fixed time (∼100 mins) on a PC
(AMD Turion@2.1 GHz with 3GB of RAM) which produces
hundreds of trajectories. To select promising solutions for
the second phase of the problem, we only consider solutions
that has a norm on the constraint violation vector less than
10−6, which reduces the number of solutions to less than
a hundred. Table II summarizes the characteristics of the
selected solutions found in the first phase.

TABLE II
OPTIMAL TOTAL ∆ V (PHASE 1) FOR THE E-E-J MISSION (KM/S)

Algorithm Best Worst Mean Std No. of
Solutions

Basin Hopping 9.558 20.933 10.954 1.861 44
Simulated Annealing 9.940 13.971 11.623 1.290 18
Multi-Start 9.584 20.239 12.133 2.018 50

TABLE III
OPTIMAL FINAL MASS (PHASE 2) FOR THE E-E-J MISSION (KG)

Algorithm Best Worst Mean Std No. of
Solutions

Basin Hopping 17, 004 16, 200 16, 720 203 40
Simulated Annealing 16, 927 15, 795 16, 459 326 18
Multi-Start 16, 995 14, 385 16, 338 517 45

1.61.611.621.631.641.651.661.671.681.691.7
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Fig. 2. Cumulative percentile of optimal solutions for the E-E-J mission

In the second phase, we perform local optimization to
maximize the final mass (see Eq. (6)) on the selected
solutions found by the three global optimizers and the results
are shown in Table III. We notice that some of the solutions in
Table II fail to converge in the second phase (and therefore
the number of solutions in Table III is less). An unpaired
student’s t-test is performed on the results found by the 3



algorithms to test for statistical significance. We found that
the results found by Basin Hopping are statistically different
from those returned by the other two algorithms, while results
found by Simulated Annealing and Multi-Start are not. The
conclusion from the unpaired student’s t-test is consistent
with the cumulative percentile curve shown in Fig. 2, in
which results found by Basin Hopping always have higher
final mass than the other two methods, while Simulated
Annealing and Multi-Start have similar performance.

Figure 3 plots the x-y projection of a trajectory found
by Basin Hopping with the highest final mass. On the plot,
the red and blue curves represent thrusting and coasting
segments, respectively; while a ∆V is shown as an arrow
in the midpoint of a segment. In this example, the spacecraft
leaves the Earth on October 15, 2022 with a V∞ of 2 km/s.
It enters an 3:2 resonance orbit with a period of ∼ 1.5 years
and goes around the Sun for 2 revs, before it flybys the
Earth after 2.9 years with an increased V∞ of 9.0 km/s. After
the gravity assist at the Earth, its aphelion increases for the
transfer to Jupiter. According to the numerical results, the
spacecraft rendezvous at Jupiter on October 2030. However,
we notice that the ∆V on the last two segments are zero (i.e.,
coasting segments), which means the spacecraft has actually
arrived at Jupiter on September 2029, about one year earlier
than the numerical results. This is merely a minor numerical
issue which does not affect the validity of the solution.
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Fig. 3. Trajectory plot of an Earth-Earth-Jupiter rendezvous mission

Besides the value of the objective function, it is also
interesting from a mission design point-of-view that the opti-
mization process is able to find trajectories that launches on
different dates. In our example in Fig. 4, the difference in the
final mass is less than 200 kg (or 1% of the initial mass) for
most launch periods. The 1% penalty of the final mass gives
flexibility to the mission designer to choose a different date in
case there is a change in the mission. The process is also able
to locate various locally optimal trajectory families, which
is interesting from an astrodynamics point-of-view. From
Fig. 5, we note that the ‘clusters’ of solutions belongs to

different Earth-Earth resonance transfer orbit. For example,
1:1 resonance with flight time ∼400 days, 2:3 resonance
with flight time ∼800 days, and 3:2 resonance with flight
time ∼1100 days. Unlike the case in the ballistic transfer, in
the low-thrust transfer case, the Earth-Earth flight time does
not exactly equal to some integer multiple of Earth’s orbital
period and the spacecraft does not encounter the Earth at the
same position from launch. However the mechanism in the
low-thrust case is similar to the chemical case [31], where
the V∞ at the second Earth encounter is increased through
some small maneuvers.
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Fig. 4. Optimal E-E-J solutions with various launch dates
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Fig. 5. Optimal E-E-J solutions with various Earth-Earth transfer times

C. Earth-Earth-Earth-Jupiter

In the second example, we examine trajectories with
two Earth swingbys. In comparison with the first case, the
dimension of the problem increases to 112 with 56 nonlinear



constraints. We let the global optimizers run for 1,000 mins
and found a few thousands trajectories, in which only a
few hundreds of solutions that has a norm on the constraint
violation vector less than 10−6 are further optimized for
the final mass. Results from the first and second phases are
summarized in Fig. 6 and Tables IV and V.

TABLE IV
OPTIMAL TOTAL ∆ V (PHASE 1) FOR THE E-E-E-J MISSION (KM/S)

Algorithm Best Worst Mean Std No. of
Solutions

Basin Hopping 7.524 38.280 11.242 3.639 488
Simulated Annealing 8.618 30.594 14.120 4.726 66
Multi-Start 7.869 31.438 12.837 3.516 204

TABLE V
OPTIMAL FINAL MASS (PHASE 2) FOR THE E-E-E-J MISSION (KG)

Algorithm Best Worst Mean Std No. of
Solutions

Basin Hopping 17, 601 11, 681 16, 609 932 239
Simulated Annealing 17, 282 15, 144 16, 249 606 29
Multi-start 17, 307 12, 602 16, 214 637 129

1.561.581.61.621.641.661.681.71.721.741.76
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Fig. 6. Cumulative percentile of optimal solutions for the E-E-E-J mission

As in the case of the E-E-J example, the Basin Hopping
algorithm surpasses the other two in terms of the quality (ob-
jective) and quantity (number of solutions) of its solutions.
However we note that in this example, only ∼40-60% of
solutions found in the first phase are able to converge in the
second phase. The reason for the decrease in the convergence
rate is most likely due to the increase in the complexity of
the problem (an extra flyby is added) that makes accounting
for the mass important already in the first optimization loop.

The trajectory of the ‘best’ solution (with the highest final
mass) found by Basin Hoppoing is plotted in Fig. 7. Here the
spacecraft first performs a 1:1 resonance transfer for 495 days
on the first leg, where the V∞ is boosted from 2.0 to 5.3 km/s.
After the first flyby, it enters a 2:1 resonance orbit where it
reencounters the Earth after 772 days and the V∞ is further

increased to 9.0 km/s. For the arrival at Jupiter, since the
∆V on the last 5 segments are zero, the spacecraft actually
rendezvous at Jupiter 4.5 years early than stated numerically,
which means the toal flight time of the trajectory is 8.0 years.
Comparing with the E-E-J trajectory in Fig. 3, the addition
of one Earth flyby increases the time of flight for one year,
while having the benefit of a higher final mass of ∼600 kg.
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Fig. 7. Trajectory plot of an Earth-Earth-Earth-Jupiter rendezvous mission

VI. CONCLUSIONS

We successfully apply global optimization techniques to
achieve the automated design of two instances of multiple
gravity assist low-thrust interplanetary trajectories within a
ten year wide launch window. The use of our technique is
not limited to the two particular problems here studied as
it rests upon a general interface between the Sims-Flanagan
trajectory model and a global optimization layer hybridized
with a local search as to deal efficiently with the nonlinear
constraints. The resulting method makes no use of expert
knowledge and starts from randomly generated trajectories,
thus achieving a completely automated design process.
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