ESA title
Deployment test of the 3Cat-4 L-band antenna inside the thermal vacuum chamber
Enabling & Support

Ariane 6 launches 3Cat-4: reflecting on Earth

08/05/2024 1660 views 11 likes
ESA / Enabling & Support / Space Transportation / Ariane

Europe’s newest rocket soon launches, taking with it many space missions each with a unique objective, destination and team at home, cheering them on. Whether launching new satellites to look back and study Earth, peer out to deep space or test important new technologies in orbit, Ariane 6’s first flight will showcase the versatility and flexibility of this impressive, heavy-lift launcher. Read on for all about 3Cat-4, then see who else is flying first.

³Cat4 students at ESEC
³Cat4 students at ESEC

3Cat-4 (pronounced “cube cat four”) is a 1-kg Earth Observation CubeSat developed by the Universitat Politècnica de Catalunya in Spain and selected by ESA Education’s ‘Fly Your Satellite!’ programme to fly on Ariane 6’s first flight.

The 3Cat-4 design was carefully reviewed by experts as part of the programme, who provided design and testing support to the mission team, including important environmental testing at ESA Education’s CubeSat supporta facility in ESEC-Galaxia, Belgium.

3Cat-4 team
3Cat-4 team

Otherwise, the nanosatellite has been nearly entirely developed by graduate and undergraduate students who have designed, built and validated the vast majority of its components, conducted complex analyses and planned and performed test campaigns with specialised equipment. For several students, the mission is central to their course curriculum or degree thesis.

“The primary goal of the mission is educational; training a group of students in the techniques and methodologies involved in flying a space mission, while conducting challenging teamwork with a real sense of responsibility,” explains Alexander Kinnaird, ESA Engineering Coordinator for the Fly Your Satellite! project.

“But 3Cat-4 also has several scientific and technological objectives that we hope will demonstrate the big potential of CubeSats when it comes to innovative space technology, usually reserved for larger satellites.”

The many elements that make up 3Cat-4, including the Flexible Microwave Payload, sixth panel from the left, which is 3Cat-4’s primary piece of equipment and will perform all of the scientific experiments onboard, and the 0.5-meter antenna stowed away in the final panel.
The many elements that make up 3Cat-4, including the Flexible Microwave Payload, sixth panel from the left, which is 3Cat-4’s primary piece of equipment and will perform all of the scientific experiments onboard, and the 0.5-meter antenna stowed away in the final panel.

The mission’s primary scientific experiment will be to measure several important climate variables using a technique called ‘Global Navigation Satellite System Reflectometry’ (GNSS-R). GNSS-R involves measuring the reflected signals from orbiting Global Navigation Satellite Systems, such as Galileo and GPS, that bounce off Earth’s surface.

This ‘passive remote sensing’ measures the difference between the signals directly received from navigation satellites in orbit and the signals from those same satellites that have been reflected off Earth. Using this data, 3Cat-4 will be able to measure the properties of the reflective surface and detect several types of weather phenomena, determine land topography and vegetation cover and extract information on ocean data such as ice coverage and thickness.

3Cat-4 antenna
3Cat-4 antenna

Along with its remote sensing capabilities, 3Cat-4 will carry an ‘L-band radiometer’ – an instrument that detects radiation emitted in the 1-2 GHz frequency range which makes it possible to analyse soil moisture and ocean salinity. The CubeSat will also have an Automatic Identification System (AIS) allowing it to track ships along their intercontinental routes. It also includes a ‘Radio Frequency Interference’ detection and mitigation system, which is especially important for microwave radiometry observations used for soil moisture measurements.

Crucially, 3Cat-4 will demonstrate the feasibility and performance of its 0.5-meter spring-like antenna, the Nadir Antenna and Deployment System (NADS). Stowed away for launch, the antenna will take up very little space, allowing its future inclusion in even smaller CubeSats. Once in orbit, it will spring open to perform impressive observations usually the domain of larger missions, providing a powerful eye on Earth despite its portable travel size.

Play
$video.data_map.short_description.content
The 3CAT-4 Nadir Antenna and Deployment Subsystem will be used to measure various aspects of Earth’s climate and environment.
Access the video

3Cat-4 will demonstrate the capacity for small CubeSats to provide a big Earth Observation service, motivating not only the students involved but also the wider community” says Lily Ha, ESA coordinator for university student activities.

“Ariane 6 is the perfect rocket to launch on, fitting perfectly with the technical and programmatic requirements of the mission but also providing great educational and promotional value. We’re so happy to support the innovation of new European rockets, to be part of such a historic launch and forever associated with this flight.”

Ariane 6 is planned to launch in June-July 2024. It follows the hugely successful Ariane 5, Europe's principal rocket for more than a quarter century, flying 117 times between 1996 and 2023 from Europe's Spaceport in French Guiana.

3Cat4 student working on CubeSat
3Cat4 student working on CubeSat

“Throughout the project, we have seen several cohorts of brilliant students making the technology behind 3Cat-4 possible,” says Cristina Del Castillo Sancho, ESA engineering coordinator for university education.

“They dared to dream of this complex mission, and they were enabled by both ESA Education and their university with the necessary expertise and resources. When Ariane 6 lifts off, this new generation of engineers will be proudly watching how their satellite goes through its ultimate test - finally in outer space.”

The 3Cat-4 mission team will be stationed in their control room at the Barcelona Operations Centre in Spain for launch, from where they will command the satellite and receive its telemetry and scientific data via their Montsec Ground Station located in the Pyrenees, Spain.

3Cat-4 team preparing for thermal vacuum test
3Cat-4 team preparing for thermal vacuum test

“It is so very fulfilling to see our satellite finally ready for launch. It has been an incredible journey for all the people involved, and the amount of knowledge gained during the development is difficult to over-emphasise,” concludes Luis Juan, 3Cat-4 Team Leader at the Universitat Politècnica de Catalunya.

“Every milestone reached was enthusiastically welcomed, from the first boot of the whole assembled satellite, a month-long mission simulation and the critical vibrations and thermal vacuum tests. With the support of ESA’s Fly Your Satellite! team and all the experts that helped us carry out the mission’s verification, now are confident that 3Cat-4 will be successful during its journey in space”. 

The 3Cat-4 CubeSat in the its thermal vacuum test chamber
The 3Cat-4 CubeSat in the its thermal vacuum test chamber

Related Articles

Artist's view of Ariane 6 – Flight Model-1 just the logos
Enabling & Support

Flying first on Ariane 6

14/03/2024 21476 views 99 likes
Read
YPSat-1 camera
Enabling & Support

Ariane 6 launches: YPSat ‘the witness’

26/03/2024 3291 views 24 likes
Read
CURIE in cleanroom with students
Enabling & Support

Ariane 6 launches: NASA’s radio detective CURIE

02/04/2024 2350 views 13 likes
Read
Enabling & Support

Ariane 6 launches: Robusta-3A for weather and radiation

09/04/2024 2811 views 24 likes
Read
ISTSat-1 ready to be baked
Enabling & Support

Ariane 6 launches: is it a plane? Aircraft spotting with IS…

16/04/2024 2079 views 20 likes
Read
OOV-Cube wide
Enabling & Support

Ariane 6 flies OOV-Cube: Internet of (wild) Things

23/04/2024 1687 views 14 likes
Read
Enabling & Support

Ariane 6 launches: Exolaunch’s EXOpod Nova

03/05/2024 1665 views 18 likes
Read
Deployment test of the 3Cat-4 L-band antenna inside the thermal vacuum chamber
Enabling & Support

Ariane 6 launches 3Cat-4: reflecting on Earth

08/05/2024 1660 views 11 likes
Read
A prototype of the vacuum printer onboard Orbital Matter’s Replicator CubeSat
Enabling & Support

Ariane 6 launches: Replicator – 3D printing in open space

16/05/2024 3098 views 12 likes
Read
PariSat during electromagnetic testing
Enabling & Support

Ariane 6 launches: PariSat, physics in space after school

23/05/2024 1314 views 5 likes
Read
SIDLOC during integration
Enabling & Support

Ariane 6 launches SIDLOC: opening up tools for safer space

30/05/2024 2830 views 19 likes
Read
SpaceCase SCX-01
Enabling & Support

Ariane 6 launches: the case for SpaceCase SC-X01

06/06/2024 4120 views 27 likes
Read
Enabling & Support

Ariane 6 launches RAMI: the interplanetary deployer

12/06/2024 1898 views 7 likes
Read
GRBBeta in orbit - visualisation
Enabling & Support

Ariane 6 launches GRBBeta: small satellite, big astrophysics

14/06/2024 4227 views 16 likes
Read
Enabling & Support

Ariane 6 launches Curium One: space for all

18/06/2024 3729 views 14 likes
Read
Nyx Bikini artist impression
Enabling & Support

Ariane 6 launches: splashdown for Nyx Bikini

21/06/2024 6480 views 21 likes
Read
Enabling & Support

Ariane 6 launches LIFI: light-speed secure communications

28/06/2024 3223 views 13 likes
Read
Lore at ESA's Cubesat Support Facility
Enabling & Support

Ariane 6 launches Peregrinus: students take on the Sun

03/07/2024 2073 views 8 likes
Read

Related Links