The European Space Agency (ESA) is Europe’s gateway to space. Its mission is to shape the development of Europe’s space capability and ensure that investment in space continues to deliver benefits to the citizens of Europe and the world.
Find out more about space activities in our 23 Member States, and understand how ESA works together with their national agencies, institutions and organisations.
Exploring our Solar System and unlocking the secrets of the Universe
Go to topicProtecting life and infrastructure on Earth and in orbit
Go to topicUsing space to benefit citizens and meet future challenges on Earth
Go to topicMaking space accessible and developing the technologies for the future
Go to topicThank you for liking
You have already liked this page, you can only like it once!
ESA’s Biomass is the first satellite to carry a P-band synthetic aperture radar. Thanks to the long wavelength of P-band, around 70 cm, this novel radar is able to penetrate through the forest canopy, allowing it to collect information on different parts of the forest, such tree trunks, branches and stems – which is where trees store most of their carbon.
The radar is fully polarimetric, which means it is capable of transmitting and receiving in two orthogonal linear polarisations, horizontal and vertical. The different signals in each polarisation channel are needed to yield different information about the forest. However to achieve information on forest height and the structure of the forest beneath the canopy, multiple satellite passes over the exact same area are needed – a technique called synthetic aperture radar interferometry. Biomass is also the first synthetic aperture radar in space to have a dedicated tomographic phase as part of its mission plan.
The animation shows Biomass’ measuring technique starting from a single pass to retrieve the polarimetric radar signature of the forest, which provides an initial view of the forest canopy and forest density. The mission’s Interferometric Phase includes a second and third pass over the same area which is crucial to measuring forest height and gaining more accurate measurements of above-ground biomass. During the mission’s Tomographic Phase, the area is revisited up to seven times to reveal the inner structure of the forest.
While the animation shows the build-up of the measuring technique as a function of increasing complexity, the Biomass mission will actually commence with a single tomographic global coverage phase, which takes about 18 months, followed by multiple nine-month interferometric global coverages for the remainder of the mission life. This will be used for understanding how forests change over time.