Planck kartiert den Beginn der Zeit
Wissenschaftler haben eine nie dagewesene Karte vom ersten Licht des Universums erarbeitet - mit dem Weltraumteleskop Planck der Europäischen Raumfahrtbehörde ESA. Die Raumsonde hat einige überraschende Daten geliefert und damit gravierende Fragen zum Urknall aufgeworfen.
Jan Tauber von der ESA sagt, die Karte gebe ein Bild des "kosmischen Mikrowellen-Hintergrunds". Diese Hintergrundstrahlung ist Licht - oder Wärme, und die wurde nur 380.000 Jahre nach dem Urknall emittiert, als Licht und Materie eng gekoppelt waren. Deshalb gibt uns die Licht-Kartierung wichtige Auskunft über die Struktur des jungen Universums. Tauber erklärt die Karte:
"Ein orangefarbener oder blauer Punkt - das sind Punkte in Entwicklung. Sie repräsentieren eine zu der Zeit etwas höhere beziehungsweise etwas geringere Dichte der Materie. Sie werden sich weiter entwickeln und immer dichter oder weniger dicht werden. Sie werden sich zu den Strukturen entwickeln, die wir heute haben. Sie werden sich zu Sternen entwickeln, und diese werden Galaxien bilden, die sich wiederum zu Galaxienhaufen formieren werden."
Tauber sagt, der größte Teil der Karte entspreche durchaus dem geltenden Modell, aber zugleich habe man mit dem Raumteleskop "merkwürdige Dinge" festgestellt, wie etwa "kalte Flecken", also strahlungsarme Stellen, wo sie nach geltender Auffassung nicht vorkommen dürften.
Bruce Partridge, Professor für Astronomie am Haverford College in Boston, hat schon früh zu dem Projekt beigetragen. Ihm war klar, dass Bilder in nie dagewesener Auflösung vonnöten waren, um dem Urknall näherzukommen, und dies sei mit dem Weltraumteleskop Planck gelungen. Dabei mussten verschiedene störende Einflüsse berücksichtigt werden:
"Wir leben in einer Galaxis, die selbst Wärmestrahlung abgibt. Die kann die vom Urknall übriggebliebene Wärme stören oder simulieren. Das muss man kontrollieren."
Das gelte auch für Hintergrundstrahlungsquellen. Alle diese Wirkungen waren auszublenden, um "an das kosmische Signal vom heißen Urknall zu gelangen."
Die Wissenschaftler sähen durch die neuen Daten eine fundamentale Theorie in Frage gestellt, sagt George Efstathiou, Professor für Astrophysik in Cambridge: Nach dieser sogenannten Inflationstheorie gab es bei der Entstehung des Universums eine Phase, in der es sich mit mehr als Lichtgeschwindigkeit beschleunigte, "sodass ein winziger Fleck unglaublich schnell expandieren konnte." Nun aber sehe man "seltsame Muster", die nicht in diese Theorie passten:
"Es ist also durchaus möglich, dass wir ein unvollständiges Bild haben. Und es könnte sein, dass wir uns geirrt haben, dass es die Inflation garnicht gegeben hat. Es ist gut möglich, dass es eine Phase des Universums vor dem Urknall gegeben hat, und dass man die Geschichte des Universums in eine Vor-Urknall-Zeit zurückverfolgen kann."
In diesen neuen Entdeckungen der Planck-Mission liegt für Efstathiou "das Potential für einen Paradigmenwandel" der Physik. Noch zeichne sich keine Theorie ab, in die man gerade festgestellten Anomalien zwanglos einfügen könne. "Wenn es aber einmal so weit ist, dass eine Theorie erscheint, die diese bislang unverbundenen Phänomene in einen einheitlichen theoretischen Zusammenhang bringt, dann weist sie den Weg in eine neue Physik."
Tauber betont, dass frühere Beobachtungen, etwa Messungen der Expansion des Universums, durchaus nicht in Frage gestellt seien. "Was sich ändert, ist unsere Auffassung vom Beginn des Universums, von den Vorgängen ganz am Anfang, beim sogenannten Urknall."
Auch Partridge bekräftigt die Solidität der Antworten der Wissenschaft auf fundamentale Fragen: "Wie alt ist das Universum? Expandiert es wirklich? Begann es mit einem heißen Urknall? Und die Anworten auf diese Fragen kommen aus diesen Beobachtungen. Ja, am Anfang war ein heißer Urknall. Und wir kennen das Alter: 13,7 Milliarden Jahre, nicht 14 oder 15, sondern 13,7 Milliarden. Diese Antworten beruhen auf Beobachtungen. Die Fragen haben die Menschheit seit Jahrtausenden beschäftigt. Und nun, in meinen Lebzeiten, werden sie beantwortet. Es sind scharfe, präzise, physikalische und auf Beobachtung beruhende Antworten."
Und schließlich noch einmal Efstathiou: "Zwar haben wir schöne Versuchsergebnisse, die unseren einfachen Modellen von den Vorgängen beim Urknall entsprechen, aber sie entsprechen ihnen nicht ganz genau. Und so ist es wohl nicht überraschend, dass wir mit unserer Physik, die das erklären soll, noch nicht ganz fertig sind. Das heißt einfach: Es gibt in der Zukunft noch viel zu tun!"