
On Weighted Maximum Model Counting:
Complexity and Fragments

Max Bannach
Advanced Concepts Team
European Space Agency

Noordwijk, The Netherlands
https://orcid.org/0000-0002-6475-5512

Markus Hecher
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, USA

https://orcid.org/0000-0003-0131-6771

Abstract—Maximum model counting (MAX#∃SAT) is a recently
introduced extension of projected model counting (#∃SAT) that
maximizes over a set of variables X the number of assignments
over a set Y that can be extended to a satisfying assignment
over Z. It is known that MAX#∃SAT also generalizes weighted
#∃SAT and MAXSAT if weights are introduced to the problem.
However, for the latter a non-trivial gadget is needed. We
propose a more generic weighting scheme that evaluates a
fitness term and a probability term simultaneously. In this setting,
MAX#∃SAT extends weighted MAXSAT and #∃SAT without the
need of gadgets. As MAXSAT is the canonical problem of cost-
optimal reasoning and #∃SAT can be seen as canonical problem of
probabilistic reasoning, MAX#∃SAT with the proposed weighting
scheme naturally fills the role as canonical problem for cost-
optimal probabilistic reasoning.

We study the problem from a complexity-theoretic point of
view for unary weights and prove that the decision version is DP

2 -
complete. We then focus on structural parameters and provide
an ETH lower bound with respect to the inputs treewidth, as well
as a treewidth-aware reduction from MAX#∃SAT to MAX#SAT.

Index Terms—max-sat, sharp-sat, treewidth

I. INTRODUCTION

We consider weighted propositional formulas in conjunctive
normal form (called WCNFs) like

φ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

as set of sets of literals{
{x1, x2}, {¬x1,¬x2}, {x3, x4}, {¬x3,¬x4}

}
with weights on the literals w : lits(φ) → N.1 Let us denote
for a set of variables X with β⊑X an assignment over X ,
i.e., a set with |β| = |X| and |β∩{x,¬x}| = 1 for all x ∈ X .
The satisfiability problem (SAT) is the fundamental problem of
many reasoning tasks that asks whether there is an assignment
over the variables of φ that satisfies all clauses, i.e., whether
there is a β⊑ vars(φ) with β ∩ c ̸= ∅ for every c ∈ φ.

Many reasoning tasks are build on qualitative extensions
of the satisfiability problem. Prominently, in cost-optimal

This research was funded by the Austrian Science Fund (FWF), grants J
4656 and P 32830, the Society for Research Funding in Lower Austria (GFF,
Gesellschaft für Forschungsförderung NÖ) grant ExzF-0004, as well as the
Vienna Science and Technology Fund (WWTF) grant ICT19-065.

1Note that N is enough the express bounded-precision floating-point num-
bers, as we can multiple these simply with a large enough number.

reasoning we do not just seek a model of φ, but we are looking
for a good one. In the weighted partial maximum satisfiability
problem (MAXSAT) we search the solution for:2

max(φ) := max
β⊑ vars(φ)

β|=φ

∑
ℓ∈β

w(ℓ).

A broad range of discrete optimization problems can be
encoded into MAXSAT with industrial applications [25] like
timetabling [23], planning [8], software analysis [27], and data
analysis [4]. For a running example in this article, we consider
the minimum cut problem, see Figure 1.

Another common extension of SAT is the weighted model
counting problem, which we call simply #SAT as we consider
only weighted formulas throughout this paper. The goal of this
problem is to compute the following value:

#(φ) :=
∑

β⊑ vars(φ)
β|=φ

∏
ℓ∈β

w(ℓ).

The value #(φ) corresponds to the probability of satisfying φ
with a random assignment that picks literals with probabilities
according to their weight. Therefore, #SAT is the canonical
problem of probabilistic reasoning with applications in ex-
plainable artificial intelligence [24], [32], reliability [10], and
verification [12]. In industrial applications, it is convenient to
work with the projected version #∃SAT, in which the input
φ(X,Y) is defined over two sets of variables. The task is to
compute the following, where β |=∗ φ denotes that the partial
assignment β can be extended to a satisfying assignment:

#(φ,X) :=
∑
β⊑X
β|=∗φ

∏
ℓ∈β

w(ℓ).

Figure 2 contains an illustrating example of this definition.
Both, MAXSAT and #SAT, succinctly describe semiring opera-
tions over exponentially many items, namely a max-of-sums or
a sum-of-products, respectively. Fremont et al. [16] proposed a
generalization of both problems as max-of-(sum-of-products):

2One can also define the problem with weights on the clauses and search
for an assignment that maximizes the sum of the weights of the satisfied
clauses. It is well-known that both definitions are equivalent.

s

a b

c

d

e f

t

20

8

8 8

1

1

10

8

10

20

min-cut(G, s, t) = −max
(
(rs) ∧ (¬rt)

∧ (rs ∧ ¬dsa → ra) ∧ (rs ∧ ¬dsc → rc)

∧ (rs ∧ ¬dse → re) ∧ (ra ∧ ¬dab → rb) ∧ (ra ∧ ¬dad → rd)

∧ (rb ∧ ¬dbd → rd) ∧ (rd ∧ ¬ddt → rt) ∧ (rc ∧ ¬dce → re)

∧ (re ∧ ¬def → rf) ∧ (rf ∧ ¬dft → rt)
)
= 12

Fig. 1. Given a directed graph G with weights on the edges and two vertices s, t ∈ V (G). We seek the set S ⊆ E(G) that minimizes
∑

e∈S cost(e) such
that G \ S does not contain an s-t-path. The problem can elegantly be encoded into MAXSAT by introducing for every v ∈ V (G) a variable rv (for v is
reachable) with w(rv) = w(¬rv) = 0, and for every arc uv ∈ E(G) a variable duv (for delete uv) with w(duv) = −cost(uv) and w(¬duv) = 0. Then
−max

(
(rs) ∧ (¬rt) ∧

∧
v∈V (G)

∧
vw∈E(G)(rv ∧ ¬dvw → rw)

)
is precisely the value of the minimum s-t-cut. The figure shows an instance with an

optimal solution of size 12 (highlighted in red) and the instantiation of the formula.

s

a b

c

d

e f

t

0.9

0.3

0.9 0.9

0.1

0.1

0.2

0.8

0.2

0.1

Pr[there is no s-t-path] = #
(

(rs) ∧ (¬rt) ∧
∧

v∈V (G)

∧
vw∈E(G)

(rv ∧ ¬pvw → rw),

{pvw | vw ∈ E(G)})
= 0.622.

Fig. 2. A #∃SAT task related to the minimum cut problem that occurs in reliability applications is to compute the probability that a network, in which
every edge vw ∈ E(G) may randomly fail (i.e., disappear), contains no s-t-path. We can use almost the same encoding with w(puv) = Pr[uv fails] and
w(¬puv) = 1− Pr[uv fails] (weights of rv are not relevant due to the projection). The figure shows the network with probabilities assigned to edges.

Definition 1 (The Maximum Model Counting Problem). Let
φ(X,Y, Z) be a formula over three distinct sets of variables.
The maximum model counting problem asks to find the partial
assignment β⊑X that maximizes the projected model count
#(φ|β, Y), were φ|β is the formula conditioned under β in
which we delete all c ∈ φ with c ∩ β ̸= ∅ and remove all
literals ℓ with ¬ℓ ∈ β from the remaining clauses.

Fremont et al. considered the problem without weights and
provided a (relatively easy but non-trivial) reduction from
MAXSAT (with weights) to the maximum model counting
problem (without weights) [16]. Audemard et al. observed that
the definition extends to a version in which the inner sum-of-
products uses weights [3] and, indeed, Definition 1, as stated
above, allows weights by our definition of #(φ,X). Maximum
model counting, thus, generalizes the canonical problems of
cost-optimal and probabilistic reasoning. Implementations of
restricted fragments thereof are available [21], [22]. However,
we are convinced that Definition 1 lacks two properties to be
a canonical problem for cost-optimal probabilistic reasoning:

1) while MAX#∃SAT trivially generalizes #∃SAT (just set
X = ∅)3, a non-trivial gadget-construction is needed to
encode and solve MAXSAT;

2) it is not possible to optimize costs and probabilities
simultaneously.

We propose a slightly more generic weighting scheme that
takes a weight over X into account (called the fitness term). In
distinction, we call the inner model count the probability term,
as probabilities are the most common use case.4 Technically,

3There is exactly one assignment over the empty set, which is empty.
4The definition, however, is general and allows non-stochastic applications.

we argue for a max-of-(sum-plus-(sum-of-products)):

max#∃(φ,X, Y) = max
α⊑X
α|=∗φ

(∑
ℓ∈α

w(ℓ)

︸ ︷︷ ︸
fitness term

+
∑
β⊑Y

α∪β|=∗φ

∏
ℓ∈β

w(ℓ)

︸ ︷︷ ︸
probability term

)
.

We denote with MAX#∃SAT the problem of computing
the value max#∃(φ) := max#∃(φ,X, Y) of a weighted
formula φ(X,Y, Z). There are some fine technicalities of this
definition worth mentioning. First observe that the definition
interleaves two semiring operations, namely a max-of-sums
and a sum-of-products. The neutral elements of these semirings
are −∞ and 0, i.e., max∅ = −∞ and

∑
∅ = 0. The second

detail is that the empty set has exactly one subset, namely ∅.
Hence, the outer maximum produces −∞ if, and only if, the
formula is unsatisfiable (in this case, there is no α⊑X with
α |=∗ φ). In contrast, if X = ∅, there is an α⊑∅ that can
be extended to a model of φ (namely α = ∅) and, hence, the
expression simplifies to:

max#∃(φ, ∅, Y) =

{
−∞ if φ is unsatisfiable;∑

β ⊑Y
β|=∗φ

∏
ℓ∈β w(ℓ) else.

Similarly, the product over the empty set is defined to be 1,
i.e.,

∏
∅ = 1 and, thus, we obtain:

max#∃(φ,X, ∅) =


−∞ if φ is unsatisfiable;
max
α⊑X
α|=∗φ

∑
ℓ∈α w(ℓ) + 1 else;

The table in Figure 3 contains an overview of all possible
special cases. The case of Z = ∅ does not change these
simplifications but removes the projection. We, thus, call this

Fig. 3. Special cases of the maximum model counting problem, that is,
simplifications of max#∃(φ,X, Y) if X = ∅ or Y = ∅. The table contains
a “✓” in the X or Y column if the corresponding set of variables is empty
in φ(X,Y, Z). The columns SAT and UNSAT contain the corresponding
simplification of the expression max#∃(φ) in dependence on the satisfiability
of φ. Whether or not Z is empty has no effect.

X Y SAT UNSAT

max
α⊑X
α|=∗φ

(∑
ℓ∈α

w(ℓ) +
∑

β ⊑Y
α∪β|=∗φ

∏
ℓ∈β

w(ℓ)
)

−∞

✓
∑

β ⊑Y
β|=∗φ

∏
ℓ∈β

w(ℓ) −∞

✓ max
α⊑X
α|=∗φ

∑
ℓ∈α

w(ℓ) + 1 −∞

✓ ✓ 1 −∞

case MAX#SAT (without “∃”).5 Our definition of MAX#∃SAT
resolves both of the raised issues: The first because MAX#∃SAT
trivially generalizes MAXSAT (set Y = Z = ∅), #∃SAT (set
X = ∅), and #SAT (set X = Z = ∅). The second because we
optimize over the fitness and probability terms simultaneously.
Figure 4 illustrates the definition using our running example.

Despite its elegance and broad application range, the max-
imum model counting problem is not well understood. Pre-
vious work on the topic, namely by Fremont et al. [16]
and Audemard et al. [3], focused on applications, practical
considerations, and implementations. But to the best of our
knowledge, no systematic study on the theoretical foundations
of the problem has been carried out so far – which is exactly
what this article provides.

Contribution I: A Complexity-Theoretic Analysis of the Maxi-
mum Model Counting Problem with Unary Weights

We study the computational complexity of natural deci-
sion versions of MAX#∃SAT. First, we prove the following
quadchotomy for simple WCNFs φ(X,Y, Z), in which we
have w(x) = 1 and w(¬x) = 0 for all x ∈ X , and
w(y) = w(¬y) = 1 for y ∈ Y .

Theorem 1 (Quadchotomy Theorem). Let φ(X,Y, Z) be a
simple WCNF. Then deciding max#∃(φ) = k for k ∈ N given
in unary is:

• DP
2 -complete;

• DP
2 -complete, if X or Y ,Z are empty;

• DP
2∩CP

= and US-hard, if X and Z are empty;
• NP-complete (k = 1) / coNP-complete (k = −∞), if X

and Y are empty.

Corollary 1. Let φ(X,Y, Z) be a simple WCNF. Then, decid-
ing whether max#∃(φ) = k for k ∈ N is NP-complete if X
and Z are empty, or if Y is empty.

Corollary 2. Let φ(X,Y, Z) be a simple WCNF. Then, decid-
ing max#∃(φ) ≤ k for k ∈ N is coNP-complete, even if X
and Z are empty. If Y is empty, the problem is coNP-complete.

Proof. This is the co-problem of the problem in the proof of
the previous task, as we can ask ≤ k via asking ≥ k + 1 and
then inverting the answer.

5Fremont et al. called the problem of Definition 1 MAX#SAT, but we think
that this name hides the fact that a projection appears internally.

Using these computational insights, we obtain the (decision)
complexity of computing MAX#∃SAT for simple WCNFs. This
renders the computation of MAX#∃SAT even slightly harder.

Theorem 2. Let φ(X,Y, Z) and ψ(X ′, Y ′, Z ′) be simple
WCNFs and k ∈ N be given in unary. Then, deciding whether
we have

k ≥ max#∃(φ) > max#∃(ψ)

is ΘP
2 -complete, even if we have X = X ′ = ∅, Z = Z ′ = ∅,

X = Z ′ = ∅, Z = X ′ = ∅, or Y = Y ′ = Z = Z ′ = ∅.

Contribution II: A Complexity Trichotomy Under the Exponen-
tial Time Hypothesis (ETH) and Structure-Aware Compilations

Given the high complexity of MAX#∃SAT, we study the
hardness for structural measures, focusing on the prominent
parameter treewidth. Indeed, structure is crucial for practical
counting algorithms [14], as a winner of model counting
competitions has observed [20].

Theorem 3 (Trichotomy Theorem). Let φ(X,Y, Z) be a
WCNF and assume ETH holds. Then max#∃(φ) cannot be
computed in time

• 22
2o(tw(φ))

· poly(|φ|);
• 22

o(tw(φ))

· poly(|φ|) if either X or Z are empty;
• 2o(tw(φ)) · poly(|φ|) if X and Z are empty or if Y is empty.

We supplement the lower bounds established in the Tri-
chotomy Theorem with an algorithm that compiles MAX#∃SAT
into MAX#SAT. This reduction is structure-aware in the sense
that it preserves the treewidth optimally with respect to the
bounds of the previous theorem.

Theorem 4 (Structure-Aware Compilation). There is an algo-
rithm that, on input of a WCNF φ(X,Y, Z) and a width-k tree
decomposition of φ, outputs in time 22k+3 · (| vars(φ)|+ |φ|)
a WCNF ψ(X,Y ′) and a width-2k+3 tree decomposition of ψ
such that max#∃(φ) = max#∃(ψ).

We also provide an upper bound that we obtain based on
an involved dynamic program over a given tree decomposition
of the input’s primal graph. In detail, we show:

Theorem 5. There is an algorithm that, on input of a simple
WCNF φ(X,Y, ∅) and a width-k tree decomposition of φ,
solves MAX#SAT in time 22

O(k) | vars(φ)|.

Corollary 3. There is an algorithm that, on input of a simple
WCNF φ(X,Y, Z) and a width-k tree decomposition of φ,
computes max#∃(φ) in time 22

2O(k)
| vars(φ)|.

We stress that Theorem 5 is stated for simple WCNFs, i.e.,
we assume w(x) = 1 and w(¬x) = 0 for all x ∈ X and
w(y) = w(¬y) = 1 for all y ∈ Y . While this strengthens
the results for lower bounds, other weights are, of course,
desirable for upper bounds. We will later discuss possibilities
to generalize the dynamic program.

s

a b

c

d

e f

t

20
0.9

8
0.3

8
0.9

8
0.9

1
0.1

1
0.1

10
0.2

1
0.8

10
0.2

20
0.1

max#
(

(rs) ∧ (¬rt) ∧
∧

v∈V (G)

∧
vw∈E(G)

(rv ∧ ¬duv ∧ ¬pvw → rw),

{dvw | vw ∈ E(G)}, {pvw | vw ∈ E(G)})
.

Fig. 4. We compute the S ⊆ E(G) that maximizes −
∑

e∈S cost(e) + Pr[there is no s-t-path]. Of course, we face a scaling issue as the probability term
is in [0, 1] while the fitness depends on the costs. However, we can add scaling factors γ1, γ2 ∈ N and optimize instead the objective −γ1

∑
e∈S cost(e) +

γ2 Pr[there is no s-t-path] by simply multiplying the weights of all duv by γ1 and by adding a fresh variable x to Y with w(x) = γ2 and w(¬x) = 0.

Fig. 5. Survey of complexity results on computing max#∃(φ) for given WCNFs φ, ψ. The value max#∃(φ) for φ(X,Y, Z) involves computing over all
X-assignments, the maximum number (weight) of Y -assignments that can be extended by a Z-assignment, whose result satisfies φ. The value k is given in
unary, which better captures the essence of the problem, as for binary representations, already a single restricted call reaches the polynomial hierarchy [28].

Problem on φ X, Y, Z ̸= ∅ X=∅ or Y=Z=∅ X=Z=∅ X=Y=∅ Result

max#∃(φ) = k DP
2-c DP

2-c (DP
2∩CP

=) ∩ US-h NP-c (k=1) / coNP-c (k=−∞) Theorem 1
max#∃(φ) ≥ k NP-c NP-c NP-c NP-c Corollary 1
max#∃(φ) ≤ k coNP-c coNP-c coNP-c coNP-c Corollary 2
k≥max#∃(φ)>max#∃(ψ) ΘP

2 -c ΘP
2 -c ΘP

2 DP
2-c Thm. 2, Cor. 4

Structure of this Article

We provide essential preliminaries in Section II and start
by proving the Quadchotomy Theorem and Theorem 2 in
Section III. We continue with ETH lower bounds and discuss
the Trichotomy Theorem, Theorem 4, and Theorem 5 in
Section IV. We conclude in Section V. The table in Figure 5
provides an overview of our results.

II. PRELIMINARIES

We assume the that reader is familiar with propositional
logic and refer to the standard textbooks [5], [19]. The
notations we use are stated within the introduction. We also
assume basic knowledge of graph theory, for which we suggest
the textbook by Diestel [9]. The primal graph Gφ of a WCNF
is the graph with vertex set V (Gφ) = vars(φ) and edge set
E(Gφ) = {{u, v} | u and v appear together in a clause of φ}.
We are interested in formulas that are structured in the sense
that their primal graph has small treewidth:

Definition 2 (Tree Decomposition). A tree decomposition
of a graph G is a rooted tree T together with a mapping
bag : V (T) → 2V (G) that satisfies the following properties:
Connectedness For every v ∈ V (G) the induced subgraph

T [{t ∈ V (T) | v ∈ bag(t)}] is a nonempty directed tree.
Covering For every {u, v} ∈ E(G) there is a t ∈ V (T) with

{u, v} ⊆ bag(t).

The width of (T, bag) is maxt∈V (T) |bag(t)| − 1, and the
treewidth tw(G) of a graph G is the minimum width of any
tree decomposition of G. To ease the design of algorithms
over tree decompositions, we assume that tree decomposi-
tions are nice [7], i.e., that every internal node t is either
an introduce or forget bag with exactly one child t′ and
bag(t) = bag(t′) ∪ {v} or bag(t) = bag(t′) \ {v} for some
v ∈ V (G), respectively; or a join bag with children t′ and t′′

with bag(t) = bag(t′) = bag(t′′). A tree decomposition

of a WCNF is a tree decomposition of Gφ, and we define
tw(φ) := tw(Gφ). In this case, we assume the presence of
a mapping label : V (T) → 2φ that maps nodes t to sets of
clauses c with vars(c) ⊆ bag(t) such that every clause of φ
appears in at least one label.

Example 1. The treewidth of the Orion constellation (as graph
on the left) is at least two since it contains a cycle. It is also
at most two by the tree decomposition on the right:

a bc

d
e

f

g
h

i
j

k

l

m

{a, b, c}

{c, d, e}

{d, e, h}

{e, f, h} {f, k} {k, l,m}

{f, g, h}

{g, h, j}{h, i, j}

For a background in complexity theory we refer to Arora
and Barak [2] and use NP, coNP, ΣP

2=NPNP, ΠP
2=coNPNP,

DP
2={L∩L′ | L ∈ NP, L′ ∈ coNP}, ΘP

2=PNP[log]⊆∆P
2=PNP

in their usual meaning. The class of problems solvable by an
NP machine such that the answer is “yes” iff there is exactly
one accepting path is called US with coNP ⊆ US [6]. The class
CP

= contains decision problems solvable by an NP machine
such that on any yes-instance the number of accepting paths
equals the number of rejecting paths [13], [30].

III. COMPLEXITY-THEORETIC ASPECTS

To study the complexity of MAX#∃SAT we argue along the
lines of the decision problem. We thereby query the result
against a given value k in unary, as it is known that already
very restricted cases are among the hardest counting problems.
Indeed, already the problem with X = Z = ∅ is PP-complete
for binary weights [1], [30], and a single of these calls reaches
the polynomial hierarchy [28]. Consequently, the (function)
problem of computing max#∃(φ) for a WCNF φ is hard

for PH under polynomial-time Turing reductions [28] and the
problem is contained in FPSPACE (similarly to the PSPACE

algorithm for quantified Boolean formulas [2, Page 83]).
However, we prove that already asking whether the resulting

value max#∃(φ) is {≤,=,≥} a polynomially bounded value
k (given in unary), is a challenging task. Indeed, this study
leads to an interesting complexity landscape of the problem
ranging over various complexity classes. We prove the Quad-
chotomy Theorem, Theorem 1, via the following lemmas.

Lemma 1. Deciding whether max#∃(φ)=k for a simple
WCNF φ(X,Y, Z) and k ∈ N is DP

2 -complete.

Proof. We first show membership, i.e., we show that we can
decide whether max#∃(φ)=k in DP

2 . To that end, we need to
construct two propositional formulas such that the first formula
is satisfiable and the second is unsatisfiable iff max#∃(φ)=k.

The idea of the proof is to construct a formula φ≥ρ
that is satisfiable if, and only if, max#∃(φ) ≥ ρ. Then
max#∃(φ)=k holds iff φ≥k is satisfiable and φ≥k+1 is not.

To define φ≥ρ, we make ρ copies of φ such that we keep
the X variables but obtain fresh sets Yi and Zi for the i-th
copy (1 ≤ i ≤ ρ). Then, we add clauses (plain implications)
specifying that the satisfying assignment over Yi (viewed as
a binary number) has to be smaller or equal to the satisfying
assignment over Yi+1. This construction allows us to track (up
to) ρ satisfying assignments.

Using auxiliary variables αi+1, we encode whether the (i+
1)-th assignment over Yi+1 is equivalent to the one over Yi
(α1 is a negative fact by adding the clause ¬α1). We can
encode the multiplication of weights of literals up to ρ for
every assignment over Yi, as this is possible in TC0 [17]. The
result of bit-wise anding with ¬αi shall then be stored using
auxiliary variables β0

i , . . ., β⌈log(ρ)⌉+1
i , which also foresees

an overflow bit. Finally, we sum up all these weights using
bit-wise plus arithmetic, and express that the resulting binary
digit must be larger than ρ (which is possible in AC0). This
construction then results in the propositional formula

φ≥ρ = ψ(X ∪ Y1 ∪ . . . ∪ Yk ∪ Z).

As claimed, this formula is satisfiable iff max#∃(φ) ≥ ρ.
To show hardness, we reduce from the DP

2 -complete prob-
lem of deciding whether a given formula ψ1 is satisfiable while
another formula ψ2 is unsatisfiable. By renaming variables if
necessary, we can assume vars(ψ1) ∩ vars(ψ2) = ∅.

For the reduction, we will construct an instance φ(X,Y, Z)
such that max#∃(φ) = 2 iff ψ1 is satisfiable and ψ2 is not. We
obtain φ as “union” of ψ1 and ψ2 using two fresh auxiliary
variables a and s. Initially, we set φ = ψ1 ∧ ψ2, and use
s to “switch” between ψ1 and ψ2. More precisely, for every
clause (l1∨. . .∨lk) in ψ1 we create a clause (¬s∨l1∨. . .∨lk)
and for every (l1∨ . . .∨ lk) in ψ2 we create (s∨ l1∨ . . .∨ lk).
Furthermore, we add the clause (¬s→ a).

To conclude the construction, we set

X = vars(ψ1) ∪ vars(ψ2), Y = {a, s}, and Z = ∅.

All variables in X obtain a weight of 0, while all variables
in Y have 1. Observe that for β⊑ vars(ψ1) ∪ vars(ψ2) with
β ̸|= ψ1, we need to set s = 0 and, thus, a = 1, to extend β to
a model of φ. Therefore, there is only one extension of β over
Y to satisfy φ. If β is a model of ψ1 and ψ2, the variables s
and a are only constrained by (¬s→ a) and, hence, there are
three extensions. On the other hand, if β |= ψ1 and β ̸|= ψ2,
we force s = 1, but a is free and, hence, two extensions
of β satisfy φ. Since we maximize overall assignments to
the variables in X , we have that ψ1 is satisfiable and ψ2 is
unsatisfiable if, and only if, max#∃(φ) = 2.

Lemma 2. Let φ(X,Y, Z) be a given simple WCNF. Decid-
ing max#∃(φ) = k for k ∈ N . . .

• is in DP
2∩CP

= and US-hard if X = Z = ∅;
• remains DP

2 -hard if Y = Z = ∅.

Proof. The proof of membership in DP
2 for X = Z = ∅ works

similarly to Lemma 1. It is also known that the problem is in
the counting complexity class CP

= for unbounded k (i.e., even
if k is given in binary) [30].

For the special case k = 1 (and X = Z = ∅), the problem
asks whether a given propositional formula has exactly one
satisfying assignment, which is the canonical problem of
unique polynomial time. Hence, the problem is US-hard.

In the case of the lemma with Y = Z = ∅, we are left
with MAXSAT. We follow the line of argument as in the
hardness proof of Lemma 1, so we reduce from the DP

2 -
complete problem of deciding whether a given formula ψ1

is satisfiable while another given formula ψ2 is unsatisfiable.
We construct φ(X,Y, Z) such that max#∃(φ)=1 iff ψ1 is

satisfiable and ψ2 is not. We obtain φ again as “union” of
ψ1 and ψ2, but using three fresh auxiliary variables s1, s2,
and a this time. Initially, we set φ = ψ1 ∧ ψ2 and use s1
and s2 to deactivate the clauses of ψ1 or ψ2, respectively.
More precisely, for every clause (l1∨ . . .∨ lk) in ψ1 we create
a clause (¬s1∨ l1∨ . . .∨ lk) and for every (l1∨ . . .∨ lk) in ψ2

we create (¬s2 ∨ l1 ∨ . . . ∨ lk). We also bound the variable a
to s2 by adding the clause (s2 ↔ a). Finally, we set

X = vars(ψ1) ∪ vars(ψ2) ∪ {s1, s2, a}, Y = ∅, and Z = ∅.

All variables in {s1, s2, a} obtain weight 1, while all variables
in X \ {s1, s2, a} have 0. Then, the maximum value any
assignment of φ can have is 3 (setting s1 = s2 = a = 1),
which requires an assignment that satisfies ψ1 and ψ2. On the
other hand, an assignment that satisfies just ψ2 has weight 2
(s1 = 0 and s2 = a = 1 due to s2 ↔ a); an assignment just
satisfying ψ1 has weight 1 (s1 = 0 and s2 = a = 0); and
an assignment that does neither satisfies ψ1 or ψ2 has weight
0. We conclude that max#∃(φ) = 1 if, and only if, ψ1 is
satisfiable and ψ2 is unsatisfiable.

The result allows us to prove Theorem 2, i.e., that testing
k ≥ max#∃(φ) > max#∃(ψ) is ΘP

2 -complete.

Proof of Theorem 2. We first prove membership, i.e., we
show that max#∃(φ) > max#∃(ψ) can be decided in ΘP

2 .

The idea is to use the formula φ≥ρ from Lemma 1 and perform
a binary search. In detail, we perform a binary search on the
interval [0, k] (recall that k ∈ N is given in unary in the
statement of the theorem) and, for the current k′ ∈ [0, k],
we test whether max#∃(φ) ≥ k′ and max#∃(ψ) ≥ k′. If
it is true for φ but not for ψ, we found a certificate that we
deal with a yes-instance; if it is the opposite, we certified
that we deal with a no-instance. In the remaining cases (both
queries are positive or both negative), we simply continue the
binary search. This procedure requires O(log k) calls to an
NP-oracle since every question translates to a SAT-question
using Lemma 1. Therefore, the decision can be done in ΘP

2 .
To establish hardness, we reduce from the PARITY(SAT)

problem, which is well-known to be ΘP
2 -complete [11], [31].

The input for this problem is a sequence of CNFs φ1, . . . , φn
with vars(φi)∩vars(φj) = ∅ for 1 ≤ i < j ≤ n. The question
is whether there is an odd index i ∈ {1, . . . , n − 1} such
that all φ1, . . . , φi are satisfiable while all φi+1, . . . , φn are
unsatisfiable. Without loss of generality, we can assume that no
φi is a tautology and that n is even; the latter can be ensured
by adding a trivial invalid formula at the end of the sequence.
We can also assume that φ1 is valid by adding two trivially
valid formulas at the beginning of the sequence.

For the reduction, we set k = n − 1 and construct two
formulas φ and ψ with k > max#∃(φ) and k > max#∃(ψ)
such that max#∃(φ) > max#∃(ψ) if, and only if, there is an
odd index i ∈ {1, . . . , n−1} for which all φ1 . . . , φi are satis-
fiable, while all φi+1 . . . , φn are not. The idea is to construct
ψ such that max#∃(ψ) = |{φi | φi ∈ SAT}| is the number of
satisfiable instances. In contrast, φ will have an “advantage”
in the first block of satisfiable instances of the sequence,
which only helps in yes-instances. Let us first describe ψ,
for which we need auxiliary variables S = {s1, . . . , sn}
and A = {a1, . . . , an}. We denote with tseitin(γ) the CNF
encoding of any formula γ due to Tseitin [29] and let ψ be:

ψ :=
∧

1≤i≤n

tseitin(si ↔ φi) ∧
∧

1≤i≤n

(ai → si)

∧
∨

1≤i≤n

(ai) ∧
∧

1≤i<j≤n

(¬ai ∨ ¬aj).

We force to set exactly one ai variable to true. Furthermore,
if ai is set to true, then si is forced to be true and, thus, φi must
be satisfiable. Setting w(ai) = w(¬ai) = 1 for all ai ∈ A and
w(x) = w(¬x) = 0 for all x ̸∈ A we obtain:

max#∃
(
ψ(∅, A, vars(ψ) \A)

)
=max#∃

(
ψ(vars(ψ) \A), A, ∅

)
= |{φi | φi ∈ SAT}|.

We build φ based on ψ, but set w(ai) = 2 and w(¬ai) = 1:

φ := ψ ∧
∧

2≤i≤n

(si → si−1) ∧
∧

2≤i≤n
i≡0 (mod 2)

(¬ai).

Due to the last part of the formula (¬ai), we can only set
ai on odd positions to true, and due to (si → si−1), we can
only select an ai if all formulas φj with j ∈ {1, . . . , i} are

satisfiable. Hence, if r is the maximum odd index such that all
φj with j ∈ {1, . . . , r} are satisfiable, we get:

max#∃
(
φ(∅, A, vars(ψ) \A)

)
=max#∃

(
φ(vars(ψ) \A,A, ∅)

)
= r + 1.

Consequently, if φ1, . . . , φn is a yes-instance, we have:

max#∃(φ) = |{φi | φi ∈ SAT}|+ 1

> |{φi | φi ∈ SAT}| = max#∃(ψ).

On the other hand, in a no-instance we clearly have:

max#∃(φ) ≤ max#∃(ψ).

This construction establishes hardness even if X = X ′ = ∅,
Z = Z ′ = ∅, X = Z ′ = ∅, or Z = X ′ = ∅. For the remaining
case of the theorem, i.e., Y = Y ′ = ∅, we need to “move”
the logic from counting to optimization. This can easily be
achieved by removing the “select at most one ai” part from ψ.
Let the resulting formula be ψ′ and let φ′ be the formula
obtained by replacing ψ with ψ′ in φ. If we set w(¬ai) = 0
for all ai ∈ A and w(x) = w(¬x) = 0 for all x ̸∈ A, we get:

max#∃
(
φ′(vars(φ′), ∅, ∅)

)
> max#∃

(
ψ′(vars(ψ′), ∅, ∅)

)
if, and only if, the input is a yes-instance.

One interesting case is not handled by Theorem 2, namely
X = X ′ = Y = Y ′ = ∅, i.e., that only Z and Z ′

are non-empty. In this case, we only deal with propositional
satisfiability problems and, hence, have to check whether φ
is satisfiable while ψ is not. This is exactly the canonical
complete problem for DP

2 .

Corollary 4. Deciding k ≥ max#∃(φ) > max#∃(ψ) for a
k ∈ N and two simple WCNFs φ(∅, ∅, Z) and ψ(∅, ∅, Z ′) is
complete for DP

2 .

IV. ETH LOWER BOUNDS AND STRUCTURE-AWARE
COMPILATIONS

The results of the last section illustrate that computing
max#∃(φ) is a difficult problem. We may hope that structured
instances allow for faster algorithms, i.e., that we can solve
the problem efficiently on instances of small treewidth. In
a sense, we answer this in the affirmative by providing
an algorithm that computes max#∃(φ) in time f(k) · |φ|
for some computable function f : N → N if a width-k
tree decomposition of Gφ is given. That is, we prove that
MAX#∃SAT is fixed-parameter tractable for the parameter
treewidth. Unfortunately, the function f in our algorithm is
triple-exponential, and we show that this is optimal assuming
the exponential time hypothesis (ETH) [18]. On the other
hand, the various complexities explored in the last section are
mirrored in the parameterized world: If one or two of the
variable sets are empty, we end up with a double- or single-
exponential runtime. We first prove the lower bounds:

Proof of the Trichotomy Theorem. We show the result for the
most involved case where X , Y , and Z are not empty. The

remaining cases work analogously; see also Lemma 1. The
proof is by a reduction from the validity problem of a QBF
of the form φ′(U, V,W) = ∃U.∀V.∃W.φ, which under ETH

cannot be solved in 22
2o(tw(φ))

· poly(|U ∪ V ∪W |) [15].
We can decide φ′ by computing max#∃(φ) such that

φ′ is valid if, and only if, max#∃(φ) = 2|V |. Note that
here 2|V | is a number given in binary, which is in contrast
to the decision problems studied in Section III. However,
this statement focuses on the computation of the resulting
value max#∃(φ). Consequently, the lower bound immediately
carries over to computing max#∃(φ).

A. Eliminating Projection via a Structure-Aware Reduction

We complement the lower bounds with a compilation from
MAX#∃SAT to MAX#SAT (without “∃”, i.e., without the pro-
jection). The reduction is structure-aware in the sense that it
obtains a tree decomposition of the input formula and produces
a decomposition of the output of a width matching Theorem 3.
To establish Theorem 4, we first describe the translation from
φ to ψ, prove soundness in Lemma 3, the bound on the
treewidth in Lemma 4, and the claimed runtime in Lemma 5.

Let in the following φ(X,Y, Z) be the given WCNF, and let
T = (T, bag, label) be a labeled width-k tree decomposition
of Gφ. Without loss of generality, we assume | label(t)| ≤ 1
and | children(t)| ≤ 2 for all t ∈ V (T). We introduce vari-
ables S of the form satαc for every c ∈ φ and every assignment
α⊑ bag(label−1(c))∩Z indicating that c is satisfied in its bag:∧

c∈ψ

∧
α⊑ bag(label−1(c))∩Z

{c}|α̸=∅

[
satαc ↔

∨
λ∈{c}|α

λ
]
, (6)

∧
c∈ψ

∧
α⊑ bag(label−1(c))∩Z

{c}|α=∅

[
satαc

]
. (7)

We need variables satα≤t and satα<t,t′ to propagate information
along the tree decomposition:

// There is a clause satisfying the bag and clauses below
are satisfied as well:∧
t∈V (T)

∧
α⊑ bag(t)∩Z

[
satα≤t ↔

∧
c∈label(t)

satαc ∧
∧

t′∈children(t)

satα<t,t′
]
, (8)

// Propagate satisfiability:∧
t∈V (T)

∧
α⊑ bag(t)∩Z

∧
t′∈children(t)

[
satα<t,t′ ↔

∨
β⊑ bag(t′)∩Z

β∩lits(bag(t))=α∩lits bag(t′)

satβ≤t′
]
. (9)

To ensure that there is an assignment over Z that satisfies
all clauses, we add constraints for the root:∨

α⊑ bag(root(T))∩Z

satα≤root(T) . (10)

Observe that the presented formulas can be converted into
CNF, even without introducing additional auxiliary variables.
Indeed, the shown formulas are essentially equivalences over
variables of the form satαc such that for any fixed assignment
over variables in X∪Y , those variables in S are pinned down.

Lemma 3 (Soundness). Let φ(X,Y, Z) be a given WCNF
and (T, bag, label) be a tree decomposition of Gφ. Equa-
tions (6)–(10) yield a formula ψ(X,Y ′) with Y ′ = Y ∪ S
such that any assignment α⊑X ∪ Y extends to a model of φ
iff a (single) extension of α is a model of ψ.

Proof. The insight is that, by construction and by the prop-
erties of a tree decomposition, Equations (6)–(10) ensure that
any assignment α over X ∪ Y can be extended to a model
of φ if, and only if, α can be extended to a model of ψ.

Let α be the given assignment over X ∪ Y . If there is an
extension β over Z such that α ∪ β is a model of φ, there
is a unique extension β′ over S such that α ∪ β′ is a model
of ψ because Equations (6)–(10) are bi-implications. Due to
the existence of β, we know from the correctness of dynamic
programming for satisfiability [26] that also Equation (10)
evaluates to true. For the other direction, suppose there is an
extension β′ over S of α such that α ∪ β′ is a model of ψ,
and note that β′ captures all satisfying extensions over Z of α.
We construct an extension β by inspecting compatible satγ≤t
variables from the root node downwards towards the leaves
of T . Going top-down, we pick a variable that is compatible
with the variable for the parent node. Then we unify the
corresponding assignments over Z, which yields β.

Lemma 4 (Treewidth-Awareness). The reduction over Equa-
tions (6)–(10) on a WCNF φ(X,Y, Z) and a width-k tree de-
composition of Gφ, outputs a formula ψ with tw(ψ) ≤ 2k+3.

Proof. Let (T, bag) be a tree decomposition of Gφ of width k.
By copying nodes if needed, we obtain a labeled tree decom-
position T = (T, bag, label) with | children(t)| ≤ 2 for every
t ∈ V (T). We construct T ′ = (T, bag′) for ψ (given through
Equations (6)–(10)) by defining for every t ∈ V (T):

bag′(t) = (bag(t) ∩ (X ∪ Y)) ∪ {satα≤t | α⊑bag(t) ∩ Z}
∪ {satαc | α⊑bag(t) ∩ Z, c ∈ label(t)}
∪
{
satβ≤t′ , sat

α
<t,t′ | t′ ∈ children(t), α⊑ bag(t) ∩ Z,

β⊑bag(t′) ∩ Z,α ∩ lits(bag(t′)) = β ∩ lits(bag(t))
}
.

By construction, |bag′(t)| ≤ k+2k+2k+4 ·2k ≤ 2k+3.

Lemma 5 (Runtime). The reduction over Equations (6)–(10)
on a WCNF φ(X,Y, Z) and a width-k tree decomposition T
of Gφ runs in time 22k+3 · (| vars(φ)|+ |φ|).

Proof. The runtime follows from analyzing the effort required
for Equations (6)–(10). The 2k superscript is due to the (2k)2

effort behind Equation (9).

B. An ETH-Tight Parameterized Algorithm for Max#SAT

The reduction of the previous subsection eliminates pro-
jection. We may ask whether we can apply a similar idea to
eliminate counting or maximization. Unfortunately, this seems
to be difficult due to the weights. However, the approach can
be extended to the case in which we are only interested in
those assignments over X for which every extension over Y
is a satisfying assignment. We can create a MAXSAT instance ψ
by encoding universality over Y by replacing the disjunctions

Listing 1: Dynamic Programming Algorithm Max#SAT(t, φ, bag, ⟨τ1, . . . , τ| children(t)|⟩).
In: Decomposition node t, WCNF φ(X,Y), bag, child tables τ1, . . . , τ|children(t)|. Out: Table for node t.

1 if t is an (empty) leaf node then return {⟨∅, 0, {⟨∅, 1⟩}⟩}
2 else if t is an introduce node introducing variable v ∈ bag(t) then

return {⟨J, f,J ⟩ | ⟨I, f , I⟩ ∈ τ1, J ∈ {I+¬v ∩ lits(X), I+v ∩ lits(X)}, |J | > 0,
J = {⟨J ′, f ′⟩ | ⟨I ′, f ′⟩ ∈ I, J ′ ∈ {I ′+¬v ∩ lits(Y), I ′+v ∩ lits(Y)}, (J ∪ J ′) |= φt}}

3 else if t is a forget node forgetting v ∈ X \ bag(t) then
return KeepMax ({⟨I−v , f + w(I ∩ {v,¬v}), {⟨I ′−v , f ′⟩ | ⟨I ′, f ′⟩ ∈ I}⟩ | ⟨I, f , I⟩ ∈ τ1})

4 else if t is a forget node forgetting v ∈ Y \ bag(t) then
return KeepMax ({⟨I−v , f , {⟨I ′−v ,Σ⟨J,g⟩∈I:J−

v =I′−v
g⟩ | ⟨I ′, f ′⟩ ∈ I}⟩ | ⟨I, f , I⟩ ∈ τ1})

5 else if t is a join node then
return KeepMax ({⟨I, f1+f2,J ⟩, |J | > 0,J = {⟨I ′, f ′

1 · f ′
2⟩ | ⟨I ′, f ′

1⟩ ∈ I1, ⟨I ′, f ′
2⟩ ∈ I2} | ⟨I, f1, I1⟩ ∈ τ1, ⟨I, f2, I2⟩ ∈ τ2})

For a set S, a variable v, and a literal ℓ, we let S+
ℓ =S ∪ {ℓ} and S−

v =S \ {v,¬v}.

in Equations (9) and (10) by conjunctions. The goal is to
simulate δ =

∑
β⊑Y

∏
ℓ∈β w(ℓ) via soft variables. To this

end, let B be the binary representation of δ. We add auxiliary
variables pi for positions i in B that are set to 1. For every
such i, we introduce i additional auxiliary variables b1i , . . . , b

i
i

to create weight 2i. Whenever pi is 0, we pin down the value of
the bji variables, i.e., we add ¬pi → ¬bji for every 1 ≤ j ≤ i.
We require clauses enforcing that exactly one of the pi’s is
set to true (with a treewidth increase of 3). Unfortunately, it
is unclear how this approach generalizes, as both the weight
and the final result depend on the assignment over X .

C. An ETH-Tight Algorithm for Max#∃SAT

We develop a dynamic program over a tree decomposition
to obtain matching upper bounds. Especially challenging are
the cases for forget and join nodes. To ensure these precise
guarantees, we must not have identical rows (with different
weights). However, while keeping the maximum weight would
suffice, we do not know which of the partial assignments
over Y sustains. Depending on which of these rows participate
in a satisfying assignment, this might result in different max-
ima. Consequently, our approach proceeds in two computing
stages. First, we compute partial assignments in a bottom-up
traversal (in post-order along the tree decomposition), which
results in a table of rows. Then, we remove those rows that do
not participate in a satisfying assignment. This is crucial, as
we must not have identical sets of assignments with different
weights. Afterwards, we can correctly determine the weights
of individual rows in a second bottom-up tree traversal.

We design an algorithm for MAX#SAT, which generalizes
to MAX#∃SAT using the encoding from the previous section.
Let φ(X,Y, ∅) be a WCNF formula and T = (T, bag) be a
tree decomposition of Gφ. Algorithm 1 is a dynamic program
that can be used for both stages. As data structure for nodes t
in T , we maintain sets of tuples, where the first elements I
are assignments restricted to variables in Y ∩ bag(t). Further,
f is a fitness value (integer). Then, the third tuple component
is a set I of tuples ⟨I ′, f ′⟩ with I ′ being again an assignment
restricted to X ∩ bag(t) and f ′ being a fitness value.

For the first stage, the function KeepMax in Algorithm 1 is
the identity function, and we do not need to compute fitness
values f (second tuple positions), which are highlighted in

green (dark green) respectively. The algorithm maintains tuples
comprising a partial model I over X and a set I of partial
models over Y . Whenever a variable is introduced, Line 2
decides on the truth value and keeps satisfying assignments.
Lines 3 and 4 project these assignments to bag(t) for forget
nodes; Line 5 merges assignments for join nodes.

In between the stages, we purge tables in a bottom-up
traversal for every node t in T : We remove from I (with ⟨I, I⟩
being contained in the table of t) those elements that do not
lead to a (succeeding) element in the table for the parent of t.
These non-succeeding elements e for t can be determined
by passing them one by one as singletons {⟨I, {e}⟩} for τ1
(τ2) and checking whether the result is empty. Let τt be
the table for t after purging. Given the τt, we can define
the function KeepMax used in Algorithm 1 (second stage).
The function for a table τ at a node t then only keeps those
elements in τ that (after shaving off fitness values f from τ)
appear in τt. If there are several elements in τ appearing in τt
after shaving off fitness values, we only keep one among these,
namely the one yielding the maximum sum over f and fitness
values f ′. This algorithm establishes Theorem 5.

D. Simulating Positive Weights

Algorithm 1 operates on simple WCNFs, in contrast to the
generic definition of MAX#SAT. The issue is Lines 4, where
we multiply fitness value g by w(J ∩ {v,¬v}). Due to this
product, decisions to keep the maximum in Lines 3, 4, or 5
might be wrong. In fact, in case of multiplications, Lines 3, 4,
or 5 must not decide on a maximum row in case of duplicates,
as these might not form the global maxima. However, we can
simulate positive integer weights that are powers of 2.

Corollary 5. There is an algorithm that solves MAX#∃SAT for
a WCNF φ(X,Y, Z) with natural weights over X and power-
of-2 weights over Y in time exp(3,O(tw(φ))) · | vars(φ)|.

Corollary 6. MAX#∃SAT on WCNF φ(X,Y, Z) with natural
weights over X and pos. integer weights ≤ w over Y can be
solved in time exp(3,O(max(log(w), tw(φ)))) · | vars(φ)|.

V. CONCLUSION

We identified MAX#∃SAT with a weighting scheme over
X (the fitness term) and over Y (the probability term) as

the canonical problem of cost-optimal probabilistic reasoning.
We investigated the complexity of the problem and proved
with the Quadchotomy Theorem that versions are complete
for classes beyond NP and coNP. This complexity landscape
of MAX#∃SAT is mirrored in the parameterized setting via
the Trichotomy Theorem, in which we established ETH-
tight bounds containing single, double, or triple exponential
dependencies on the input’s treewidth. The table in Figure 5
provides an overview of all our results.

REFERENCES

[1] Shyan Akmal and Ryan Williams. MAJORITY-3SAT (and Related
Problems) in Polynomial Time. In 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1033–1043. IEEE, 2021.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[3] Gilles Audemard, Jean-Marie Lagniez, and Marie Miceli. A New Exact
Solver for (Weighted) Max#SAT. In 25th International Conference on
Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5,
2022, Haifa, Israel, pages 28:1–28:20, 2022.

[4] Jeremias Berg, Antti Hyttinen, and Matti Järvisalo. Applications of
MaxSAT in Data Analysis. In Proceedings of Pragmatics of SAT 2015,
Austin, Texas, USA, September 23, 2015 / Pragmatics of SAT 2018,
Oxford, UK, July 7, 2018, pages 50–64, 2018.

[5] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, Second Edition. IOS Press, 2021.

[6] Andreas Blass and Yuri Gurevich. On the Unique Satisfiability Problem.
Inf. Control., 55(1-3):80–88, 1982.

[7] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algo-
rithms for the pathwidth and treewidth of graphs. Journal of Algorithms,
21(2):358–402, 1996.

[8] Blai Bonet, Guillem Francès, and Hector Geffner. Learning Features
and Abstract Actions for Computing Generalized Plans. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pages 2703–2710, 2019.

[9] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate
texts in mathematics. Springer, 2012.

[10] Leonardo Dueñas-Osorio, Kuldeep S. Meel, Roger Paredes, and
Moshe Y. Vardi. Counting-based reliability estimation for power-
transmission grids. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, pages 4488–4494, 2017.

[11] Thomas Eiter and Georg Gottlob. The complexity class theta2
p: Recent

results and applications in AI and modal logic. In Fundamentals of
Computation Theory, 11th International Symposium, FCT ’97, Kraków,
Poland, September 1-3, 1997, Procs., volume 1279 of Lecture Notes in
Computer Science, pages 1–18. Springer, 1997.

[12] Linus Feiten, Matthias Sauer, Tobias Schubert, Alexander Czutro, Eber-
hard Böhl, Ilia Polian, and Bernd Becker. #sat-based vulnerability
analysis of security components - A case study. In 2012 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, DFT 2012, Austin, TX, USA, October 3-5,
2012, pages 49–54, 2012.

[13] Stephen A. Fenner, Frederic Green, Steven Homer, and Randall Pruim.
Determining Acceptance Possibility for a Quantum Computation is Hard
for the Polynomial Hierarchy. Electron. Colloquium Comput. Complex.,
TR99-003, 1999.

[14] Johannes K. Fichte, Markus Hecher, and Florim Hamiti. The Model
Counting Competition 2020. ACM Journal of Experimental Algorith-
mics, 26(1):1–26, 2021.

[15] Johannes K. Fichte, Markus Hecher, and Andreas Pfandler. Lower
Bounds for QBFs of Bounded Treewidth. In 35th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 410–424.
ACM, 2020.

[16] Daniel J. Fremont, Markus N. Rabe, and Sanjit A. Seshia. Maximum
Model Counting. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, pages 3885–3892, 2017.

[17] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform
constant-depth threshold circuits for division and iterated multiplication.
J. Comput. Syst. Sci., 65(4):695–716, 2002.

[18] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
Problems Have Strongly Exponential Complexity? Journal of Computer
and System Sciences, 63(4):512–530, 2001.

[19] Donald E. Knuth. The Art of Computer Programming, volume 4,
Fascicle 6. Addison-Wesley, 2016.

[20] Tuukka Korhonen and Matti Järvisalo. Integrating Tree Decomposi-
tions into Decision Heuristics of Propositional Model Counters (Short
Paper). In 27th International Conference on Principles and Practice
of Constraint Programming, CP 2021, Montpellier, France (Virtual
Conference), October 25-29, 2021, pages 8:1–8:11, 2021.

[21] Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R. Jiang. Solving stochastic
boolean satisfiability under random-exist quantification. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
688–694, 2017.

[22] Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R. Jiang. Solving exist-
random quantified stochastic boolean satisfiability via clause selection.
In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 1339–1345, 2018.

[23] Alexandre Lemos, Pedro T. Monteiro, and Inês Lynce. Minimal
Perturbation in University Timetabling with Maximum Satisfiability.
In Integration of Constraint Programming, Artificial Intelligence, and
Operations Research - 17th International Conference, CPAIOR 2020,
Vienna, Austria, September 21-24, 2020, Proceedings, pages 317–333,
2020.

[24] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev,
and João Marques-Silva. Assessing heuristic machine learning explana-
tions with model counting. In Theory and Applications of Satisfiability
Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9-12, 2019, Proceedings, pages 267–278, 2019.

[25] Marek Piotrów. UWrMaxSat: Efficient Solver for MaxSAT and Pseudo-
Boolean Problems. In 32nd IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA, November
9-11, 2020, pages 132–136. IEEE, 2020.

[26] Marko Samer and Stefan Szeider. Algorithms for propositional model
counting. Journal of Discrete Algorithms, 8(1):50–64, 2010.

[27] Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik. Maximum
Satisfiability in Software Analysis: Applications and Techniques. In
Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, pages 68–
94, 2017.

[28] Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM
Journal on Computing, 20(5):865–877, 1991.

[29] G. S. Tseitin. On the complexity of derivation in propositional calculus.
In Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970, pages 466–483. Springer Berlin Heidelberg, 1983.

[30] Ito Tsuyoshi. Discussion on stackexchange: Comparing Solution Counts
among Propositional Formulas and PP-Completeness. https://tinyurl.
com/27m6r3tq. Accessed: 2024-03-15.

[31] Klaus W. Wagner. More complicated questions about maxima and
minima, and some closures of NP. Theor. Comput. Sci., 51:53–80, 1987.

[32] Stephan Wäldchen, Jan MacDonald, Sascha Hauch, and Gitta Kutyniok.
The Computational Complexity of Understanding Binary Classifier
Decisions. J. Artif. Intell. Res., 70:351–387, 2021.

https://tinyurl.com/27m6r3tq
https://tinyurl.com/27m6r3tq

	Introduction
	Preliminaries
	Complexity-Theoretic Aspects
	ETH Lower Bounds and Structure-Aware Compilations
	Eliminating Projection via a Structure-Aware Reduction
	An ETH-Tight Parameterized Algorithm for Max#SAT
	An ETH-Tight Algorithm for Max#ESAT
	Simulating Positive Weights

	Conclusion
	References

