1st ACT Contest on Global Trajectory Optimisation Solution Report

Massimiliano Vasile Department of Aerospace Engineering, Glasgow University, Glasgow

Outline

University of Strathclyde – UK

– Colin McInnes – Professor of Engineering Sciences

University of Paderborn – Germany

- Michael Dellnitz Full Professor
- Oliver Schütze Post Doc
- Marcus Post PhD Student

Munich University of Technology – Germany Oliver Junge – Associate Professor

[The Team)	(The Approach) (The Solution)	(Conclusions)

- Target asteroid 2001 TW229
- Launch window [3653-10958] MJD2000
- Maximum transfer time 30 years
- Launcher capability 2.5 km/sec
- No constraint on the escape asymptote
- Minimum allowed heliocentric distance of 0.2 AU
- Spacecraft initial mass 1500 kg
- Maximum thrust level 0.04N
- Isp=2500s
- Objective function:

 $\max J = m_f \left| \mathbf{U}_{rel} \Box \mathbf{v}_{ast} \right|$

Problem Formulation

Problem Formulation

(The Team) [The Problem) () (The Solution	1	Conclusions)
							Conclusions	

Three different trajectory models

- Multiple gravity assist trajectory model with impulsive deep space manoeuvres
- Multiple gravity assist trajectory model with pseudo-equinoctial elements for low-thrust arcs description
- Multiple gravity assist trajectory model with exponential-sinusoid spirals for low-thrust arcs description

University of Glasgow, Department of Aerospace Engineering, James Watt Building, Glasgow G12 8QQ, Tel. +44-141-330-6465 mail: m.vasile@aero.gla.ac.uk

(The Team) (The Problem) (〕(The Solution) (Conclusions)

- 1. Analytically propagate forward for a time t_i at celestial body p_i up to a point s_i
- 2. Compute a 2-impulse transfer, Lambert arc with transfer time T_i , from s_i to the next celestial body p_{i+1}
- 3. Solve exactly the GA manoeuvre as a function of the pericentre radius r_p and the hyperbola plane attitude angle ω
- 4. Add up all the Δv_i plus the initial Δv_0 N
- 5. Solve: $\min_{\mathbf{x}\in D} f(\mathbf{x}) = \sum_{i=0}^{\infty} \Delta v_i$

 $\mathbf{x} = \left[N, p_1, p_2, ..., p_N, t_0, \Delta v_0, t_1, T_1, \omega_1, r_{p_1}, ..., t_i, T_i, \omega_i, r_{p_i}, ..., t_N, T_N\right]$

University of Glasgow, Department of Aerospace Engineering, James Watt Building, Glasgow G12 8QQ, Tel. +44-141-330-6465 mail: m.vasile@aero.gla.ac.uk

• Trajectory expressed in terms of non-singular equinoctial elements:

$$\mathbf{r} = \mathbf{r}(p, f, g, h, k, L)$$

• Pseudo-equinoctial elements with exponential shape

$$\alpha = \alpha_0 + \delta \alpha$$

$$\alpha_1 = \alpha_{01} + \alpha_{11} e^{\alpha_{21}(L-L_0)}$$

$$\alpha_2 = \alpha_{02} + \alpha_{12} e^{\alpha_{22}(L-L_0)}$$

$$\alpha_3 = \alpha_{03} + \alpha_{13} e^{\alpha_{23}(L-L_0)}$$

$$\alpha_4 = \alpha_{04} + \alpha_{14} e^{\alpha_{23}(L-L_0)}$$

$$\alpha_5 = \alpha_{05} + \alpha_{15} e^{\alpha_{23}(L-L_0)}$$

University of Glasgow, Department of Aerospace Engineering, James Watt Building, Glasgow G12 8QQ, Tel. +44-141-330-6465 mail: m.vasile@aero.gla.ac.uk

Tool Description: Trajectory Model

 $\alpha_{\rm ex}(L-L_{\rm e})$

- Inverse approach for the thrust profile $\mathbf{a}_{d} = \ddot{\mathbf{r}}(\boldsymbol{\alpha}(L)) + \mu \frac{\mathbf{r}(\boldsymbol{\alpha}(L))}{r(\boldsymbol{\alpha}(L))^{3}}$
 - where $\boldsymbol{\alpha} \equiv [p, f, g, h, k, -] \Longrightarrow a_d = 0$
- Mass consumption is computed by numerical quadrature:

$$m_p = 1 - e^{-\int_{L_0}^{L_f} \frac{|\mathbf{a}_d|}{I_{sp}g_o} \frac{dt}{dL}} dL$$

• Terminal constraint on the TOF:

University of Glasgow, Department of Aerospace Engineering, James Watt Building, Glasgow G12 8QQ, Tel. +44-141-330-6465 mail: m.vasile@aero.gla.ac.uk

Tool Description: Trajectory Model

 $\Delta t = \int \frac{dt}{dL} dL$

Exponential Sinusoid Model

• Given in 2D the following shape for the radius r as a function of the true anomaly θ :

$$r = k_0 \exp[k_1 \sin(k_2\theta + \phi)]$$

• The required control acceleration is :

$$a = \frac{\tan\gamma}{2\cos\gamma} \left[\frac{1}{\tan^2\gamma + k_1k_2^2s + 1} - \frac{k_2^2(1 - 2k_1s)}{(\tan^2\gamma + k_1k_2^2s + 1)^2} \right]$$

• with:

$$\dot{\theta}^2 = \left(\frac{\mu}{r^3}\right) \frac{1}{\tan^2 \gamma + k_1 k_2^2 s + 1}$$

University of Glasgow, Department of Aerospace Engineering, James Watt Building, Glasgow G12 8QQ, Tel. +44-141-330-6465 mail: m.vasile@aero.gla.ac.uk

• By enforcing the following conditions at the boundaries:

$$\begin{cases} r_1 = k_0 \exp[k_1 \sin \phi] \\ r_2 = k_0 \exp[k_1 \sin(k_2 \bar{\theta} + \phi)] \end{cases}$$

- With the additional condition on the initial flight path angle: $\tan \gamma_1 = k_1 k_2 \cos \phi$
- It is possible to obtain k_0, k_1 and ϕ as a function of k_2 and γ_1
- No conditions on the extremal velocities can be enforced
- 3D powered GA manoeuvre for MGA trajectories

Two different global optimisation tools have been used:

- EPIC at Glasgow University
- GAIO at Paderborn University

University of Glasgow, Department of Aerospace Engineering, James Watt Building, Glasgow G12 8QQ, Tel. +44-141-330-6465 mail: m.vasile@aero.gla.ac.uk

Tool Description: Optimization

• Reconstruct the set of feasible solutions **x** with property *P* $X = \{ \mathbf{x} \in D \mid P(\mathbf{x}) \}$

• where

$$D = \left\{ x_i \mid x_i \in [b_i^l, b_i^u] \subseteq \Re, i = 1, \dots, n \right\}$$

• *X* converges to the global optimum set:

$$X_o = \left\{ \mathbf{x}^* \in D \mid P(\mathbf{x}^*) \land \forall \mathbf{x} \in X \Longrightarrow \mathbf{x}^* \ \mathbf{p} \ \mathbf{x} \right\}$$

- The Multiagent Collaborative Search is a general framework for agent based stochastic methods, such as Particle Swarm or Ant Colonies.
- A population of agents, endowed with a set of behaviours, is deployed into the search space and seeks for solutions with the property P
- Some behaviours are peculiar to Evolutionary Algorithms others to PSO
- The MACS algorithm aims at reconstructing the optimal set X_0 or the closest suboptimal set X.
- Based on the output of the MACS step the solution space D is decomposed into subdomains D_1 such that:

$$\int_{l=1}^{M} D_{l} = D$$

• Some D_l are then pruned and others are explored further by MACS

Tool Description: EPIC

Global Optimization Using Dynamical Systems

Idea: Newton's method = discrete dynamical system

 \rightarrow Use global dynamical systems numerics for

global optimization

Software tool (Paderborn, Munich):

GAIO: "Global Analysis of Invariant Objects"

Tool Description: GAIO

[The Team) (The Problem) ()(The So	olution) (Conclusions	s)

- The problem was tackled from different directions with different approaches.
- In particular the first attempt was to find optimal low-thrust direct trajectories.
- Two different shape-based methods were used to generate a first guess solution:
 - The exponential-sinusoid by Petropoulos et al.
 - The pseudo-equinoctial elements by De Pascale and Vasile

[The Team) (The Problem) () (The Solution) (Conclusions)

- Due to the expected higher reliability of the exponential-sinusoid the group in Paderborn initially used that trajectory model and GAIO as global optimiser
- The group in Glasgow used EPIC as global optimiser and the pseudo-equinoctial model for the trajectory
- The most promising first guesses were then re-optimised with the software DITAN

(The Team) (The Problem) (〕(The Solution) (Conclusions)

- The result of this first round of optimisations was a number of trajectories with a value of the objective function not higher than 290e3 as first guess
- The exponential-sinusoid though generally produced trajectories with a high value of the thrust level

(The Team) (The Problem) (〕(The Solution) (Conclusions)

- The second step was to study MGA trajectories. In particular two parallel directions were taken:
 - Inverting the motion through Jupiter or Saturn
 - Slow-down as much as possible with respect to the asteroid at the perihelion
- For the later strategy we used both shape-based methods to come up with a trajectory that could improve the value of the best direct one
- Unfortunately neither the exponential-sinusoid nor the pseudo-equinoctial one were yielding any trajectory with a feasible thrust level along the whole transfer

(The Team) (The Problem) (〕(The Solution) (Conclusions)

- To compute the motion-inversion trajectories we used the purely chemical model with impulsive manoeuvres
- Though all the trajectories going to Jupiter or Saturn were optimal and with a feasible escape velocity, the cost of the inversion manoeuvre was always excessive: higher than 10 km/s

[The Team) (The Problem) (〕(The Solution) (Conclusions)

- The final step was to use the chemical model with impulsive manoeuvres to seek for optimal trajectories with multiple swingbys not inverting the motion
- Working in parallel we tried different combinations were tried: EVA, EEVA, EEVVA, EEVMMeA
- The most promising ones were then re-optimised with DITAN but with low-thrust manoeuvres instead of the chemical manoeuvres

)

Parameter	Value					
Planetary sequence	E-E-V-V-TW229					
Launch Date	5 November 2027 (10170.5 MJD2000)					
Total ∆V (m/s)	5429.9	5429.9				
Final mass (kg)	1202					
Earth Fly-by	1089.37 MJD2000 (t ₀ +723.17 d)	r _p =25176.5 km				
Venus Fly-by	1107.27 MJD2000 (t ₀ +179 d)	r _p = 9179.4 km				
Venus Fly-by	1148.61 MJD2000 (t ₀ +413.40 d)	r _p = 6351.8 km				
Objective function (kg km ² /s ²)	385160					
Total transfer time (d)	2840.4					

The Solution

• Optimal low-thrust trajectories are modified optimal impulsive trajectories

• Both shaping approaches overestimate mass consumption and thrust level

•Both global optimisation methods were quite effective providing a large number of solutions

