ACT Global Optimization Competition Workshop

Mikhail S. KONSTANTINOV
Gennadiy G. FEDOTOV
Moscow Aviation Institute

Viacheslav G. PETUKHOV
Khrunichev State Research and Production Space Center




OBJECTIVE FUNCTION: PRELIMINARY CONSIDERATION

3= M| (V-v,g) v

astl

Impact point in the vicinity
of asteroid’s perihelion

1) Retrograde orbit

2) Impact in the vicinity
of S/C perihelion

3) S/C aphelion distance
should be maximized

Minimum propellant

Launch date and transfer
duration should be
optimized

Giant planets swingbys or
low-thrust should be
considered

1) Swingbys are prefered in
comparison with thrusting

2) Transfer duration tends to
maximal



THEREFORE...

Thanks ACT & Dario 1zzo
for an interesting problem



FLYBY CONSTRAINTS: ASYMPTOTIC VELOCITY ROTATION

Maximal angles = flyby sequences E...JSA or E...JSJA are prefered
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LOW-THRUST TRAJECTORY: BOUNDARY CONDITIONS

Initial point: Swingby:
X(O): Xo p, = Vof P,
v(0)=v, +V P, (0) -
— Vo © pv(o)’ V+:Vp,+V;,
m(0) = m,. X=Xy,
where
cos
Final point: V:=M-|sinfgcosy |, p.. =m—2arccos - v
: : ) mi
x(T)=x.., sin gsiny 1+ A=
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VERSIONS OF TRAJECTORY PROFILE AND COMPUTATIONAL TECHNIQUES

1. Flyby sequence in the inner Solar system
(aphelion increasing + apsidal line positioning)

1.1. EV...E or EV...V coast fbey sequence

1.2. EE, EV, VE or VV trajectOry using low-thrust arc

>k

2. Retrograde trajectory shaplng in the Quter Solar system

using Giants flybys and/or Iow thrust

EJSJA, EJSA, ESJA, ESA Or EJA flyby sequence using low-thrust arcs if necessary

-Or-

EA trajectory using low-thrust arc(s). . *
LN N

[\ Lambert solver
' Conic-patched interplanetary trajectory calculation based on
' the Kepler equation

‘s TPBVP solver (numerical Integration, targeting to the next
planet varying the trajectory arc duration and departure
asymptotic velocity direction). Trajectory arc can include one

. ‘\c\\f _thrusting arc using parametric thrust steering
| Power-limited (LP) problem solver
" Constant ejection velocity (LP-to-CEV) problem solver




PROBLEM COMPLEXITY

1. Large number of routes under consideration:

[ Swingby ]

[ 18t p;anet ] [ A pllanet ] [ ] [ M planet ]

(womt ) ([ eoms ] (. ) [ _nNomws |

[ halfoforbit | [ 2% half of orbit |

[ Descending node ] [ Ascending node ]

2. Local optimization of low-thrust arcs: bifurcations, numerical stability and
convergence problems

Global optimization assumes using of reliable local optimization techniques.

Local optimization technique of multiply swingbys low-thrust trajectory is insufficiently elaborated.

So, some simplifications are inevitable.

Due to problem complexity
researcher’s intuition and experience should be used
along with optimization techniques using




SOFTWARE

EPOCH - LP-problem solver E-ProTO — multi-orbits trajectory optimization,
CEV-problem

=

.......

.......

GALTT - Gravity-Assisted Low-Thrust
Trajectory Evaluation

L PEEEEEE SR ]

-

Other software: Legend:

* LP — CEV continuation (frozen trajectory structure) - previously developed and exploited software
» Lambert solvers - modified software

* Conic-patched interplanetary trajectory calculation - new-developed software

based on the Kepler equation



TRAJECTORY DESCRIPTION: INITIAL FLYBY SEQUENCE

| 1. EV, 440.667 days | 2. EVE, +1322.383 days,
] | pericenter radius 40795.8 km

Y

4. EVEVE, +368.930 days,
pericenter radius 8756.6 km

3. EVEV, +452.055 days ,
pericenter radius 16696.8 km




TRAJECTORY DESCRIPTION: EARTH-to-EARTH TRAJECTORY ARC

1. Tangential thrust 2. LP-trajectory 3. CEV-trajectory
(braking)

Departure: Asteraid O at 15 Jul 2023, 5:37:10

[ h loci 0.0 m/ - -
A?riraal:u;:;t;ea:?f;wZDZEH.-I;:ES:-:]U Continuation | 5. EVEVEE, +1200.0 days,,
;ransferdurat_ion: 1211.01 days LP — CEV, pericenter radius 7936.0 km,
efformance indes:  0.0198 m2/:3 th t 29 861 + 221.237 =
haracteristic velocity: 1202 mis tranSfer rusting ' ' -
Departure mass 1500.0 kg . 251.098 days
Arrival mass  T455 .8 kg duratlon
Fropellant mass 442 kg
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TYPICAL POWER-LIMITED PROBLEM

2

.
Purpose: To minimize J = ;[aTadt for a dynamical system obeying the differential equations (:it;( =Q, +a,

0
and having following boundary conditions: t = 0: x(0) =x,, dx(0)/dt = v, m(0) = m,, t=T:x(T) =X, dx(T)/dt =v,..
Here T is final time, a is thrust acceleration, x and v are vectors of spacecraft position and velocity respectively, Q is gravity potential.
Let apply Pontryagin’s maximum principle to reduce this OCP to the TPBVP.
Hamiltonian of this dynamical system is H =-a'a/2 + p,"v + p,"Q, + p,"a. So, optimal control is a = p, and equations of optimal
motion become following:

d?x
otz =Q, +p,,
d’p,

dt2 = QXXpV’

t=T:x(T) =X, dx(T)/dt = v;.

P, (0)

X(T)—x
In fact, it is necessary to solve equation f(z) = 0, where f(z) = (N-=x, is vector of residuals, Z :( ] is vector of
v(T)-v, p,(0)

The boundary conditions for rendezvous mission has form: t = 0: x(0) =x,, dx(0)/dt = v,,,

unknown TPBVP parameters, p, = -dp,/dt.



ALGORITHMS FOR POWER-LIMITED PROBLEM

Continuation (homotopy) technique is used for LP-problem solving.

Purpose of continuation method

“Regularization” of numerical trajectory optimization, i.e. elimination (if possible) the methodical
deffects of numerical optimization. Particularly, there was stated and solved problem of trajectory
optimization using trivial initial approximation (the coasting along the initial orbit for example).




CONTINUATION TECHNUQUE

Continuation (Homotopy) Technique

Application to Optimal Control Problem (OCP)

Problem: to solve non-linear system
f(z)=0 1)
with respect to vector z

Let z, - initial approximation of solution. Then
f(z,)=b (2)
where b - residuals when z = z,,.

Let consider immersion z(t), where 7 is a scalar parameter,
and equation f(Z) _ (1_ T)b
©)
with respect to z(t). Obviously, z(1) is solution of eq. (1).
Let differentiate eq. (2) on t and resolve it with respect to dz/dr:

% _ (b, 20)=7,
dr

(4)

Just after integrating eq. (4) from 0 to 1 we have solution of
eq. (1).

Equation (4) is the differential equation of continuation
algorithm (the formal reduction of non-linear system (1) into
initial value problem (4)).

Differential equations (4) are integrated using a high-order
Runge-Kutta method with adaptive step size control.

o _
Optimal motion equations dt
(after applying the maximum principle): dp

dt

<C> Boundary conditions (an example): X(0) = X,,X(T) =x,

Boundary value problem parameters and
residuals: z=p(0),f =x(T)—X,
oX
<O> Sensitivity matrix: f, = ox(T)
0z
Associated system of optimal motion o.d.e.
+ and perturbation equations for residuals and
sensitivity matrix calculation: dx
2 =H_,
a P
dp __
dt *
¢ (2)om, Xon,
dt\ oz oz ™oz
d()__y &y
dt\ oz 0z P oz
<<>> Extended initial conditions: X(0) =Xy, X(T) =x,, 2)2( = O,gs =




OCP-SOLVER BASED ON CONTINUATION ALGORITHM

Initial
approximation z,

Reduction of optimal control problem
to the boundary value problem
by maximum principle

—~ CONTINUATION METHOD

Initial residuals b calculation
by optimal motion o.d.e. integrating
for given guess value z,
of boundary value problem parameters

1

1st version

of o.d.e. right-
hand side
calculation

Continuation method’s 0.d.e. integrating ond version

dz 1 of o.d.e. right-hand
dr =-1,(9b, 2(0) =z, side calculation

with respectto t fromOto 1

Associated integrating of optimal motion Integrating of optimal motion equations for

equations and perturbation equations for current z(z) to calculate current residuals f(z,t)
rrent z(t) to calculate current residuals f(z,7) and for pertubed z(t) to calculate f,(z,t) by fini
and sensitivity matrix f,(z,7) difference technique




CONTINUATION WITH RESPECT TO GRAVITY PARAMETER (1/3)

Occasional reasons of continuation algorithm failure: sensitivity matrix degeneration (bifurcation of optimal solutions)

Mostly bifurcations of optimal planetary
trajectories are connected with different
number of complete orbits.

If angular distance will remain constant during continuation, the continuation way in
the parametric space will not cross boundaries of different kinds of optimal
trajectories. So, the sensitivity matrix will not degenerate.

The purpose of the technique modification - to fix angular distance of transfer during continuation
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Sequence of trajectory calculations using
basic continuation method
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Sequence of trajectory calculations using

continuation with respect to gravity parameter

Earth-to-Mars, rendezvous,
launch date October 1, 2001,
V_=0ml/s, T=200 days

1- Earth at launch

2 - Earth at arrival

3- Mars at arrival

4 - intermediate trajectories (t < 1)
5- optimal trajectory (t = 1)



CONTINUATION WITH RESPECT TO GRAVITY PARAMETER (2/3)

Let x,(0), X,(T) - departure planet position when t=0 and t=T;

X, - target planet position when t=T. Let suppose primary gravity parameter to
be linear function of t, and let choose initial value of this gravity parameter p,
using following condition:

1) angular distances of transfer are equal when t=0 and t=1,
2) When t=1 primary gravity parameter equals to its real value (1 for
dimensionless equations)

The initial approximation is SC coast motion along departure planet orbit. Let
the initial true anomaly equals to v, at the start point S, and the final one equals
to v,=v,y+o at the final point K (¢ is angle between x, and projection of x, into
the initial orbit plane).

The solution of Kepler equation gives corresponding values of mean anomalies M, and M, (M=E-e-sinE, where
E=2-arctg{[(1-e)/(1+€e)]°5tg(v/2)} is eccentric anomaly). Mean anomaly is linear function of time at the keplerian orbit: M=M,+n-(t-t,),
where n=(u,/a%)°° is mean motion. Therefore, the condition of angular distance invariance is M, +2n N,,,=nT+M,, where N,,, is number
of complete orbits. So initial value of the primary gravity parameter is

MOZ[( Mk-i-27t Nrev - MO)/T]Zasa

and current one is

p()=pot(L-po) T
The shape and size of orbits should be invariance with respect to t, therefore
v(t, )=p(c)*° v(t, 1).




CONTINUATION WITH RESPECT TO GRAVITY PARAMETER (3/3)

Equations of motion: X=u(t)Q, +p,, P, =u(r)Q,p,

X(0) =Xy, X(0) = ¥ (1)V,,
X(T) =X, X(T) = p” (D)v,.

X(T) =X, )
X(T) —p"2 (1),

Boundary conditions:

Residuals: f = (

Boundary value problem parameters:

2= (p0). PO = (pyg ye)’

Equation of continuation method: dz:—fl(z)(b+6fj 2(0) = z,
dr ’ ’
where 3
d’ ( j ax apv
b=1(z,) ar \ag) MRy F
d? (op, ox op,
dt_z( 0z j s ){ 2Py )az O %}
( ox(T)/op,, ox(T)/ap,, )
=| d d _
T lglexmany.) golexm/ap.) i( ): Mo @, X P
dt? ot 62 oz’
d° ( P, j o 8 X op,
—Q —(Q +Q. :
ox 7\ o) " ar Py RO S (0P) G+ O
_ o /
x 1 ap x(O) _ %O _x(O) _, xO _ 1
or 2u¥(r) ot K oz oz ot ot 2u?() o °
op.(0) _2p,(0) _— 0p.(0) _2p,(0) _ ap,(0) _ap,(0) _
ap v0 ap vO ap v0 ap vO 61' Or



TYPICAL CEV-PROBLEM WITH THRUST SWITCHINGS

d?x P
T —2=Q +5-6
Purpose: To minimize J = j&Edt for a dynamical system obeying the differential equations dt2d * m
o W m P
5

dt - w
and having following boundary conditions: t = 0: x(0) =x,, dx(0)/dt = v, m(0) = m,, t=T:Xx(T) =X, dx(T)/dt = v,.
Here & is step-like thrusting function, P — thrust, w — exhaust velocity, m — spacecraft mass.

2 2
Pontryagin’s maximum principle reduces this OCP to the following TPBVP: (jjtz( =Q, +5E&, dd ev =-Q_p,,
m pv t XXI=v
dm P dp P
5 —Fm —_§5—"_p,,
ot 5W, at m? Py

1 if 0,
t = 0: x(0) =x,, dx(0)/dt = vy, m(0) =m,, t=T:x(T) = X, dx(T)/dt =v,, p.(T) = 0, where step-like thrusting function & :{ ">

0, if w, <0,
1+
and switching function v, = b* =" P

w X(T) =X P, (0)
In fact, it is necessary to solve equation f(z) = 0, where f(z)=| v(T)-v, | is vector of residuals,and z=|p,(0)

P, (T) P, (0)



LP-to-CEV CONTINUATION USING FROZEN TRAJECTORY STRUCTURE

1. Sequence of thrusting and coasting arcs is assumed fixed

7 =

2. Equations of optimal motion are following: 94X _ Q.+ 5.{(1_1)” P }pw
mp,

t
(the equations correspond to LP-problem 42
If =0 and to CEV-problem if 1=1) dtpzv =Q p,
am _ _sP
dt w
dp, _ 5 P
dt m?
o : 1
2. Switching function: v = P _2*Pn <.
m w T
(O =x R Thrusting
3. Initial conditions: o . !
v(0) = v, +V, P, | OSSR :
P ! A '
m(O) =m,. :" ’,’/ \V(tz) ——————————————— ﬁ
. o T i T
4. Final conditions: X— X, o \/ 2 i
pv -7 msgn(VTVast t 4 At1 : AtZ i At3 |
Z P
At, =T - A
f= 4 e > k(AL)
Q@) s
k(AtN c71)//(1:’\1 71) . e 2¢ Atl
) Multiplier providing minimal arc length ¢




EARTH-to-ASTEROID POWER-LIMITED TRAJECTORY

Departure: fsteraid 0 at 7 Now 2026, S5:53:94
Departure velocity 0.0 mis

Arrival: 2001 TWwz229 at 15 Aug 20493, 5534
Transfer duration: B125.00 days

Ferformance index: 01555 m2srsa
Characteristi c welacity: 2631 mJds
Departure mass 1429.5 kg

Arrival mass  1164.0 kg

Fropellant mass 265.5 kg

Departure: Astewnid O at 7 How 2026, £:53:<H
Lepardure velodty 0.0 mf=

Arrival: 2001 T'wzZ9 at 16 M ay 20494, 5:53:94
Tranzfer daration: G00.00 days

FPerformance index: 00532 m2/f=2
Charactaristic welacity: 5672 miz

Departure mass 19429.5 kg

Arrival mass 1302.0kg

Fropellanl mass  120.7 kg

Continuation wrt. Continuation wrt.

boundary conditions

gravity parameter
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TRAJECTORY DESCRIPTION: FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY

—

6. EVEVEEA, +6130.0 days,
pericenter radius 7600.0 km,
thrusting 2798.027 days
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FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY

169.233°
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FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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RAAN, deg.

FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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COMPLETE TRAJECTORY

Objective function value:
Route:

Launch date:

Escape velocity:

Total duration:

Final S/C mass:

1364042.86 kg-km?/sec?;

EVEVEEA

JD 2457556.7 (June 17.2, 2016)

2.474133 km/sec
9914.034 days
1070.187 kg

9. 3" thrusting arc

e th?usting arc

0. 20015 TW229 arrival

8. 5" swingby~(Earth)

A

4. 3" swingby_(Menus)

\ 2. 1 swingby (Venus‘)_:\ |

3. 2" swingby (Earth)

" 1. Earth departure

5. 4" swingby (Earth)



EXAMPLE OF LOCAL OPTIMIZATION COMPLEXITY:

DIRECT EARTH-to-ASTEROID TRAJECTORY

1. Initial S/C orbit: line of apsides along to asteroid’s line of apsides;
pericenter radius equals to earth orbit radius at departure date;
apocenter radius corresponds to asymptotic velocity 2.5 km/s;
inclination equals to 0.

2. Final S/C orbit: line of apsides along to asteroid’s line of apsides;
pericenter radius equals to asteroid’s pericenter radius;
inclination and apocenter radius are varied.

3. Problem: minimum-time transfer to the final orbit
with constrained minimal heliocentric distance (0.2 AU).
The constraint is regulated by number of orbits (continuation
wrt. gravity parameter), final inclination, and final apocenter

radius.
4. Solvers: a) Averaged optimal control problem (maximum principle,
fﬁ? continuation tec_hnique, E-ProTO software)_. o
b) Unaveraged optimal control problem (maximum principle,

continuation technique, averaged solution as an intial guess,
E-ProTO software)




DIRECT EARTH-to-ASTEROID TRAJECTORY: RESULTS

INITIAL ORBIT: 1.0 x 1.4239976 AU, i = 0°
%\ FINAL ORBIT: 1.8815331 x 8.1846558 AU, i = 136.5°
\\ FINAL MASS: 436.365 kg
\ MINIMAL HELIOCENTRIC DISTANCE: 0.2009528 AU
N TRANSFER DURATION: 20.658 (thrusting) + 4.784 (coasting) = 25.442 years

J =529207.74 kg-km?/s?




TECHNIQUES OF MULTIREVOLUTIONAL OPTIMIZATION

Equinoctial orbital elements are used:

, . i . [
h = E, e, =ecos(Q+w), ey:e3|n(Q+a)), |X=tanlcosQ, |y:tan£st, F=v+o0+Q
MU

Here p, e, o, v, i, Q are Keplerian elements, u - primary gravity parameter. It is considered conventional CEV-problem without any
constraints on thrust direction.

Maximum principle reduces the problem into TPBVP. The numerical averaging over the orbital period is used for computational
consumption reducing and numerical stability increasing. A numerous versions of boundary conditions were considered.

The continuation (homotopy) procedure was used to solve minimum-time problem (see 4.1.1). The simple typical guess values:

Pro = 11, Pexo = Peyo = Pixo = Piyo = O (initial values of co-state variables), T = 1 (dimensionless orbital period referred to the initial
orbit) as a rule provides stable convergence of optimization. Of course, initial values of co-states from the OCP solution having

close boundary conditions provides improved convergence.

Solver of minimum-propellant problem uses minimum-time solution as initial approximation. The factored secant update algorithm
is used for minimum-propellant problem.

Both techniques demonstrates their robustness and efficiency and there were used for a numerous applied problems.




CONCLUSION

1. Tolerable objective function value was obtained without using
Jupiter/Saturn flybys

2. Global optimization should be supported by reliable methods of local
optimization

3. Continuation technique allows to find “global” minimum among local
minimums depending on restricted number of parameters (boundary
conditions, transfer duration, number of orbits)

4. THANK YOU FOR ATTENTION



