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J = mf ⋅|(v-vast)Tvast|

OBJECTIVE FUNCTION: PRELIMINARY CONSIDERATION

Launch date and transfer 
duration should be 
optimized

Giant planets swingbys or 
low-thrust should be 
considered

Impact point in the vicinity
of asteroid’s perihelion

1) Retrograde orbit
2) Impact in the vicinity 
of S/C perihelion
3) S/C aphelion distance 
should be maximized

Minimum propellant
1) Swingbys are prefered in 
comparison with thrusting
2) Transfer duration tends to 
maximal



THEREFORE…

Thanks ACT & Dario Izzo
for an interesting problem



FLYBY CONSTRAINTS: ASYMPTOTIC VELOCITY ROTATION
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Maximal angles ⇒ flyby sequences E…JSA or E…JSJA are prefered



LOW-THRUST TRAJECTORY: BOUNDARY CONDITIONS
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VERSIONS OF TRAJECTORY PROFILE AND COMPUTATIONAL TECHNIQUES

1. Flyby sequence in the inner Solar system
(aphelion increasing + apsidal line positioning)

1.1. EV…E or EV…V coast flyby sequence

1.2. EE, EV, VE or VV trajectory using low-thrust arc

2. Retrograde trajectory shaping in the outer Solar system
using Giants flybys and/or low thrust

EJSJA, EJSA, ESJA, ESA or EJA flyby sequence using low-thrust arcs if necessary

- or -

EA trajectory using low-thrust arc(s). • Lambert solver
• Conic-patched interplanetary trajectory calculation based on 
the Kepler equation
• TPBVP solver (numerical integration, targeting to the next 
planet varying the trajectory arc duration and departure 
asymptotic velocity direction). Trajectory arc can include one 
thrusting arc using parametric thrust steering
• Power-limited (LP) problem solver
• Constant ejection velocity (LP-to-CEV) problem solver

• Lambert solver
• Conic-patched interplanetary trajectory calculation based on 
the Kepler equation
• TPBVP solver (numerical integration, targeting to the next 
planet varying the trajectory arc duration and departure 
asymptotic velocity direction). Trajectory arc can include one 
thrusting arc using parametric thrust steering
• Power-limited (LP) problem solver
• Constant ejection velocity (LP-to-CEV) problem solver



PROBLEM COMPLEXITY

Swingby

1st planet 2nd planet …

1 orbit 2 orbits

Mth planet

1st half of orbit 2nd half of orbit

N orbits…

Descending node Ascending node

1. Large number of routes under consideration:

2. Local optimization of low-thrust arcs: bifurcations, numerical stability and 
convergence problems

Global optimization assumes using of reliable local optimization techniques.

Local optimization technique of multiply swingbys low-thrust trajectory is insufficiently elaborated.

So, some simplifications are inevitable.

Due to problem complexity
researcher’s intuition and experience should be used

along with optimization techniques using

Due to problem complexity
researcher’s intuition and experience should be used

along with optimization techniques using



SOFTWARE

EPOCH – LP-problem solver E-ProTO – multi-orbits trajectory optimization,
CEV-problem

PL – CEV-problem solver

Other software:

• LP → CEV continuation (frozen trajectory structure)

• Lambert solvers

• Conic-patched interplanetary trajectory calculation
based on the Kepler equation

GALTT – Gravity-Assisted Low-Thrust 
Trajectory Evaluation

Legend:

- previously developed and exploited software

- modified software

- new-developed software



1. EV, 440.667 days1. EV, 440.667 days 2. EVE, +1322.383 days,
pericenter radius 40795.8 km
2. EVE, +1322.383 days,
pericenter radius 40795.8 km

3. EVEV, +452.055 days ,
pericenter radius 16696.8 km
3. EVEV, +452.055 days ,
pericenter radius 16696.8 km

4. EVEVE, +368.930 days ,
pericenter radius 8756.6 km
4. EVEVE, +368.930 days ,
pericenter radius 8756.6 km

TRAJECTORY DESCRIPTION: INITIAL FLYBY SEQUENCE
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TRAJECTORY DESCRIPTION: EARTH-to-EARTH TRAJECTORY ARC

1. Tangential thrust
(braking)

2. LP-trajectory 3. CEV-trajectory

Boundary conditions, 
continuation wrt. gravity 
parameter

Continuation  
LP → CEV,
transfer 
duration
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5. EVEVEE, +1200.0 days ,
pericenter radius 7936.0 km,
thrusting 29.861 + 221.237 =
251.098 days

5. EVEVEE, +1200.0 days ,
pericenter radius 7936.0 km,
thrusting 29.861 + 221.237 =
251.098 days



Purpose: To minimize ∫=
T

dtJ
02

1 aaT for a dynamical system obeying the differential equations ,2

2

ax
x +Ω=

dt
d

and having following boundary conditions: t = 0: x(0) =x0, dx(0)/dt = v0, m(0) = m0, t = T: x(T) = xf, dx(T)/dt = vf..
Here T is final time, a is thrust acceleration, x and v are vectors of spacecraft position and velocity respectively, Ω is gravity potential.

Let apply Pontryagin’s maximum principle to reduce this OCP to the TPBVP.
Hamiltonian of this dynamical system is H = -aTa/2 + px

Tv + pv
TΩx + pv

Ta. So, optimal control is a = pv and equations of optimal
motion become following:
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The boundary conditions for rendezvous mission has form: t = 0: x(0) =x0, dx(0)/dt = v0,   t = T: x(T) = xf, dx(T)/dt = vf .

In fact, it is necessary to solve equation f(z) = 0, where is vector of residuals,                         is vector of

unknown  TPBVP parameters, px = -dpv/dt.
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TYPICAL POWER-LIMITED PROBLEM



ALGORITHMS FOR POWER-LIMITED PROBLEM

Continuation (homotopy) technique is used for LP-problem solving.

Purpose of continuation method
“Regularization” of numerical trajectory optimization, i.e. elimination (if possible) the methodical 
deffects of numerical optimization. Particularly, there was stated and solved problem of trajectory 
optimization using trivial initial approximation (the coasting along the initial orbit for example).

Continuation (homotopy) technique is used for LP-problem solving.

Purpose of continuation method
“Regularization” of numerical trajectory optimization, i.e. elimination (if possible) the methodical 
deffects of numerical optimization. Particularly, there was stated and solved problem of trajectory 
optimization using trivial initial approximation (the coasting along the initial orbit for example).



CONTINUATION TECHNUQUE

Problem: to solve non-linear system
(1)

with respect to vector z

Let z0 - initial approximation of solution. Then
(2)

where b - residuals when z = z0.

Let consider immersion z(τ), where τ is a scalar parameter,
and equation

(3)
with respect to z(τ). Obviously, z(1) is solution of eq. (1).
Let differentiate eq. (2) on τ and resolve it with respect to dz/dτ:

(4)

Just after integrating eq. (4) from 0 to 1 we have solution of
eq. (1).

Equation (4) is the differential equation of continuation 
algorithm (the formal reduction of non-linear system (1) into 
initial value problem (4)).

Differential equations (4) are integrated using a high-order 
Runge-Kutta method with adaptive step size control.

Continuation (Homotopy) Technique

f z b0( ) =

f z b( ) ( )= −1 τ

d
d

z f z b z zz
1

0τ
= − =− ( ) , ( )  0

0)( =zf

Application to Optimal Control Problem (OCP)

Optimal motion equations
(after applying the maximum principle):

Boundary conditions (an example):

Boundary value problem parameters and 
residuals:

Sensitivity matrix:

Associated system of optimal motion o.d.e. 
and perturbation equations for residuals and 
sensitivity matrix calculation:

Extended initial conditions:
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OCP-SOLVER BASED ON CONTINUATION ALGORITHM

Reduction of optimal control problem
to the boundary value problem

by maximum principle

Initial
approximation z0

Initial residuals b calculation
by optimal motion o.d.e. integrating

for given guess value z0 
of boundary value problem parameters

Associated integrating of optimal motion 
equations and perturbation equations for 

current z(τ) to calculate current residuals f(z,τ) 
and sensitivity matrix fz(z,τ)

Continuation method’s o.d.e. integrating

with respect to τ from 0 to 1

d
d

z f z b z zz
1

0τ
= − =− ( ) , ( )  0

Integrating of optimal motion equations for 
current z(τ) to calculate current residuals f(z,τ) 

and for pertubed z(τ) to calculate fz(z,τ) by finite-
difference technique

Solution
z(1)

CONTINUATION METHOD

1st version
of o.d.e. right-

hand side 
calculation

2nd version
of o.d.e. right-hand 
side calculation



CONTINUATION WITH RESPECT TO GRAVITY PARAMETER (1/3)

Occasional reasons of continuation algorithm failure: sensitivity matrix degeneration (bifurcation of optimal solutions)

Mostly bifurcations of optimal planetary 
trajectories are connected with different 
number of complete orbits.

If angular distance will remain constant during continuation, the continuation way in 
the parametric space will not cross boundaries of different kinds of optimal 
trajectories. So, the sensitivity matrix will not degenerate.

The purpose of the technique modification - to fix angular distance of transfer during continuation

Earth-to-Mars, rendezvous,
launch date October 1, 2001,
V∞= 0 m/s, T=200 days

1 - Earth at launch
2 - Earth at arrival
3 - Mars at arrival
4 - intermediate trajectories (τ < 1)
5 - optimal trajectory (τ = 1)

Sequence of trajectory calculations using
basic continuation method

Sequence of trajectory calculations using
continuation with respect to gravity parameter



CONTINUATION WITH RESPECT TO GRAVITY PARAMETER (2/3)

Let x0(0), x0(T) - departure planet position when t=0 and t=T;
xk - target planet position when t=T. Let suppose primary gravity parameter to 
be linear function of τ, and let choose initial value of this gravity parameter µ0
using following condition:

1) angular distances of transfer are equal when τ=0 and τ=1;
2) When τ=1 primary gravity parameter equals to its real value (1 for 
dimensionless equations)

The initial approximation is SC coast motion along departure planet orbit. Let 
the initial true anomaly equals to ν0 at the start point S, and the final one equals 
to νk=ν0+ϕ at the final point K (ϕ is angle between x0 and projection of xk into 
the initial orbit plane).

The solution of Kepler equation gives corresponding values of mean anomalies  M0 and Mk (M=E-e⋅sinE, where
E=2⋅arctg{[(1-e)/(1+e)]0.5tg(ν/2)} is eccentric anomaly). Mean anomaly is linear function of time at the keplerian orbit: M=M0+n⋅(t-t0), 
where n=(µ0/a3)0.5 is mean motion. Therefore, the condition of angular distance invariance is Mk+2π Nrev=nT+M0, where Nrev is number 
of complete orbits. So initial value of the primary gravity parameter is

µ0=[( Mk+2π Nrev - M0)/T]2a3,
and current one is

µ(τ)=µ0+(1-µ0) τ.
The shape and size of orbits should be invariance with respect to τ, therefore

v(t, τ)=µ(τ)0.5 v(t, 1).



CONTINUATION WITH RESPECT TO GRAVITY PARAMETER (3/3)
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Equations of motion:

Boundary conditions:

Residuals:

Boundary value problem parameters:

Equation of continuation method:

where



Purpose: To minimize for a dynamical system obeying the differential equations∫=
T

dt
w
PJ

0

δ

⎪
⎪
⎭

⎪⎪
⎬

⎫

−=

+Ω=

,

,2

2

w
P

dt
dm

m
P

dt
d

δ

δ ex
x

and having following boundary conditions: t = 0: x(0) =x0, dx(0)/dt = v0, m(0) = m0, t = T: x(T) = xf, dx(T)/dt = vf.
Here δ is step-like thrusting function, P – thrust, w – exhaust velocity, m – spacecraft mass.
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Pontryagin’s maximum principle reduces this OCP to the following TPBVP:

TYPICAL CEV-PROBLEM WITH THRUST SWITCHINGS



1. Sequence of thrusting and coasting arcs is assumed fixed

2. Equations of optimal motion are following:

(the equations correspond to LP-problem
if τ=0 and to CEV-problem if τ=1)

2. Switching function:

3. Initial conditions:

4. Final conditions:

LP-to-CEV CONTINUATION USING FROZEN TRAJECTORY STRUCTURE
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EARTH-to-ASTEROID POWER-LIMITED TRAJECTORY

Continuation wrt. 
gravity parameter

Continuation wrt. 
boundary conditions



TRAJECTORY DESCRIPTION: FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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6. EVEVEEA, +6130.0 days ,
pericenter radius 7600.0 km,
thrusting 2798.027 days

6. EVEVEEA, +6130.0 days ,
pericenter radius 7600.0 km,
thrusting 2798.027 days



FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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FINAL (CEV) EARTH-to-ASTEROID TRAJECTORY
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1. Earth departure

2. 1st swingby (Venus)

3. 2nd swingby (Earth)

4. 3rd swingby (Venus)

5. 4th swingby (Earth)

6. 1st thrusting arc

7. 2nd thrusting arc

8. 5th swingby (Earth)

9. 3rd thrusting arc

10. 2001 TW229 arrival

COMPLETE TRAJECTORY

Objective function value: 1364042.86 kg⋅km2/sec2;
Route: EVEVEEA
Launch date: JD 2457556.7 (June 17.2, 2016)
Escape velocity: 2.474133 km/sec
Total duration: 9914.034 days
Final S/C mass: 1070.187 kg

Objective function value: 1364042.86 kg⋅km2/sec2;
Route: EVEVEEA
Launch date: JD 2457556.7 (June 17.2, 2016)
Escape velocity: 2.474133 km/sec
Total duration: 9914.034 days
Final S/C mass: 1070.187 kg



EXAMPLE OF LOCAL OPTIMIZATION COMPLEXITY:
DIRECT EARTH-to-ASTEROID TRAJECTORY

1. Initial S/C orbit: line of apsides along to asteroid’s line of apsides;
pericenter radius equals to earth orbit radius at departure date;
apocenter radius corresponds to asymptotic velocity 2.5 km/s;
inclination equals to 0.

2. Final S/C orbit: line of apsides along to asteroid’s line of apsides;
pericenter radius equals to asteroid’s pericenter radius;
inclination and apocenter radius are varied.

3. Problem: minimum-time transfer to the final orbit
with constrained minimal heliocentric distance (0.2 AU).
The constraint is regulated by number of orbits (continuation
wrt. gravity parameter), final inclination, and final apocenter
radius.

4. Solvers: a) Averaged optimal control problem (maximum principle,
continuation technique, E-ProTO software).

b) Unaveraged optimal control problem (maximum principle,
continuation technique, averaged solution as an intial guess,
E-ProTO software)

J=89000 J=330000 J=351000

J=529000



DIRECT EARTH-to-ASTEROID TRAJECTORY: RESULTS

INITIAL ORBIT: 1.0 × 1.4239976 AU, i = 0°

FINAL ORBIT: 1.8815331 × 8.1846558 AU, i = 136.5°

FINAL MASS: 436.365 kg

MINIMAL HELIOCENTRIC DISTANCE: 0.2009528 AU

TRANSFER DURATION: 20.658 (thrusting) + 4.784 (coasting) = 25.442 years

J = 529207.74 kg⋅km2/s2



TECHNIQUES OF MULTIREVOLUTIONAL OPTIMIZATION

Equinoctial orbital elements are used:

Here p, e, ω, ν, i, Ω are Keplerian elements, µ - primary gravity parameter. It is considered conventional CEV-problem without any 
constraints on thrust direction. 

Maximum principle reduces the problem into TPBVP. The numerical averaging over the orbital period is used for computational 
consumption reducing and numerical stability increasing. A numerous versions of boundary conditions were considered.

The continuation (homotopy) procedure was used to solve minimum-time problem (see 4.1.1). The simple typical guess values:
ph0 = ±1, pex0 = pey0 = pix0 = piy0 = 0 (initial values of co-state variables), T = 1 (dimensionless orbital period referred to the initial 
orbit) as a rule provides stable convergence of optimization. Of course, initial values of co-states from the OCP solution having 
close boundary conditions provides improved convergence.

Solver of minimum-propellant problem uses minimum-time solution as initial approximation. The factored secant update algorithm 
is used for minimum-propellant problem.

Both techniques demonstrates their robustness and efficiency and there were used for a numerous applied problems.

µ
ph = ( )ω+Ω= coseex ( )ω+Ω= sineey Ω= cos

2
tan iix Ω= sin

2
tan ii y Ω++= ωνF,, , , ,



CONCLUSION

1. Tolerable objective function value was obtained without using 
Jupiter/Saturn flybys

2. Global optimization should be supported by reliable methods of local 
optimization

3. Continuation technique allows to find “global” minimum among local 
minimums depending on restricted number of parameters (boundary 
conditions, transfer duration, number of orbits)

4. THANK YOU FOR ATTENTION


