Amid a backdrop of far-off galaxies, the majestic dusty spiral, NGC 3370, looms in the foreground in this NASA/ESA Hubble Space Telescope image. Recent observations taken with the Advanced Camera for Surveys show intricate spiral arm structure spotted with hot areas of new star formation. Nearly 10 years earlier NGC 3370, in the constellation Leo, hosted a bright exploding star.
In November 1994, the light of a supernova in nearby NGC 3370 reached Earth. This stellar outburst briefly outshone all of the tens of billions of other stars in its galaxy. Although supernovae are common, with one exploding every few seconds somewhere in the universe, this one was special. Designated SN 1994ae, this supernova was one of the nearest and best observed supernovae since the advent of modern, digital detectors. It resides 98 million light-years from Earth. The supernova was also a member of a special subclass of supernovae, the type Ia, the best tool astronomers have to chart the growth rate of the expanding universe.
Recently, astronomers have compared nearby type Ia supernovae to more distant ones, determining that the universe is now accelerating in its expansion and is filled with mysterious 'dark energy.' Astronomers must calibrate the true brightness of type Ia supernovae to measure the true size and expansion rate of the universe. The very nearest type Ia supernovae, such as SN 1994ae, can be used to calibrate distance measurements in the universe, because other, fainter stars of known brightness can be observed in the same galaxy. These stellar "standard candles" are the Cepheid variable stars, which vary regularly in brightness with periods that are directly related to their intrinsic brightness, and thus allow the distance to the galaxy—and the supernova—to be determined directly. However, only the Hubble Space Telescope, equipped with its new Advanced Camera for Surveys, has the capability to resolve these individual Cepheids.