The European Space Agency (ESA) is Europe’s gateway to space. Its mission is to shape the development of Europe’s space capability and ensure that investment in space continues to deliver benefits to the citizens of Europe and the world.
Find out more about space activities in our 23 Member States, and understand how ESA works together with their national agencies, institutions and organisations.
Exploring our Solar System and unlocking the secrets of the Universe
Go to topicProtecting life and infrastructure on Earth and in orbit
Go to topicUsing space to benefit citizens and meet future challenges on Earth
Go to topicMaking space accessible and developing the technologies for the future
Go to topicThank you for liking
You have already liked this page, you can only like it once!
The evolution of measurements of the rate of the Universe’s expansion, given by the so-called Hubble Constant, over the past two decades. The slightly esoteric units give the velocity of the expansion in km/s for every million parsecs (Mpc) of separation in space, where a parsec is equivalent to 3.26 light-years.
In recent years, the figure astronomers derive for the Hubble Constant using a wide variety of cutting-edge observations to gauge distances across the cosmos is 73.5 km/s/Mpc, with an uncertainty of only two percent. These measurements are shown in blue.
Alternatively, the Hubble Constant can also be estimated from the cosmological model that fits observations of the cosmic microwave background, which represents the very young Universe, and calculate a prediction for what the Hubble Constant should be today. Measurements based on this method using data from NASA’s WMAP satellite are shown in green, and those obtained using data from ESA’s Planck mission are shown in red.
When applied to Planck data, this method gives a lower value of 67.4 km/s/Mpc, with a tiny uncertainty of less than a percent.
On the one hand, it is extraordinary that two such radically different ways of deriving the Hubble constant – one using the local, mature Universe, and one based on the distant, infant Universe – are so close to each other. On the other hand, in principle these two figures should agree to within their respective uncertainties, causing what cosmologists call a ‘tension’ – an oddity that still needs explaining.
The single purple point is a measurement obtained through yet another method, using data from the first simultaneous observation of light and gravitational waves emitted by the same source – a pair of coalescing neutron stars.