ESA’s Jupiter Icy Moons Explorer, Juice, has two monitoring cameras (Juice Monitoring Cameras, JMC) to provide snapshots with different fields of view.
The images are provided in 1024 x 1024 pixel resolution and can be processed in colour. Their purpose is to monitor the spacecraft’s various booms and antennas, especially during the challenging deployment period following launch. A scientific camera will provide high-resolution imagery during the cruise phase flybys of Earth, Moon and Venus, and of Jupiter and its icy moons once in the Jupiter system in 2031.
The approximate locations of the two cameras are indicated on the central spacecraft diagram, pointing in the viewing direction. The insets show an indication of what can be expected in the images, and are representative of the situation after the booms have been fully deployed. Key features correlating to the various instrument booms are labeled in each of the insets (see key for details).
The +X +Y +Z graphic represents the different faces of the spacecraft as may be referred to in image captions. For orientation, the high-gain antenna is on the -X side, the solar arrays rotate around the +/- Y axis, and the spacecraft was originally attached to the launcher on the -Z side. The direction of travel can change between +/- Z depending on the spacecraft orientation.
The final published images may appear in a different orientation to the sketches shown here, with additional features visible in the images. The first images taken just minutes after launch also featured Earth in the background.
About Juice
Juice is humankind’s next bold mission to the outer Solar System. After an eight-year journey to Jupiter, it will make detailed observations of the gas giant and its three large ocean-bearing moons: Ganymede, Callisto and Europa. This ambitious mission will characterise these moons with a powerful suite of remote sensing, geophysical and in situ instruments to discover more about these compelling destinations as potential habitats for past or present life. Juice will monitor Jupiter’s complex magnetic, radiation and plasma environment in depth and its interplay with the moons, studying the Jupiter system as an archetype for gas giant systems across the Universe.